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Abstract

We study the methods and approaches used in simulating systems of biochemical

reactions. We present a stochastic model motivated by gene expression which in-

cludes production of protein molecules and their interactions with decoy binding

sites. Then we formulate the associated Master equation. We focus on the distri-

bution of free protein which cannot be expressed in a closed form. Therefore we

present three different approaches to obtain it: employing singular perturbation

reduction to obtain quasi-steady-state solution, simulating through stochastic algo-

rithms and solving the associated system of ODEs. We also add large-system-size

scaling to obtain statistical characteristics of free protein distribution like the Fano

factor in a very simple form. We show that the Fano factor is greater than one

for the intermediate levels of binding sites in contrast with Poissonian character

(the Fano factor equals one) for no binding sites of their excess. In addition, we

investigate the mRNA – microRNA system of reactions. Also here we derive quasi-

steady-state solution and express the formula for the Fano factor in a closed form.

It yields values below one for non-extreme levels of interaction strength. All results

are supported and illustrated with the help of numerical simulations.

Keywords: gene expression • stochastic simulation • Master equation • singular

perturbation
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Abstrakt

V práci sa venujeme metódam a postupom používaných pri sledovaní systémov bio-

chemických reakcií. Prezentujeme v nej stochastický model, ktorý je motivovaný

génovou expresiou a zahrňuje tvorbu proteínov ako aj ich interakcie s falošnými

väzobnými miestami. Uvádzame taktiež prislúchajúcu Master rovnicu. Snažíme

sa vyjadrit’ pravdepodobnostné rozdelenie pre vol’né proteíny, ktoré však nejde vy-

jadrit’ v uzavretom tvare. Preto použijeme tri rozličné spôsoby ako ho dostat’: po-

mocou singulárnej perturbačnej redukcie nájst’ riešenie v kvázistabilnom stave, cez

stochastické simulačné algoritmy alebo vyriešením prislúchajúceho systému ODR.

Pridaním podmienky pre vel’ký rozmer systému získame štatistické vlastnosti pre

pravdepodobnostné rozdelenie vol’ných proteínov (ako napríklad Fano faktor) vo

vel’mi jednoduchej forme. Ukazuje sa, že pre strednú úroveň počtu väzobných mi-

est je Fano faktor väčší ako jedna, na rozdiel od Poissonovského charakteru (čomu

prislúcha Fano faktor rovný jednej) v prípadoch žiadného alebo extrémne vel’kého

počtu väzobných miest. Ďalej skúmame systém reakcií medzi mRNA a microRNA.

Tiež vyjadríme riešenie v kvázistabilnom stave a nájdeme uzavretý výraz pre Fano

faktor. Ten dosahuje hodnoty menšie ako jedna pre neextrémne úrovne interakčnej

sily. Všetky výsledky dokumentujeme pomocou numerických simulácií.

Kl’účové slová: génová expresia • stochastické simulácie • Master rovnica •
singulárna perturbácia
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Introduction

According to [36], a gene is defined as a hereditary unit of DNA that is required

to produce a functional product. This process of transforming the information from

a gene to create further gene products is known as gene expression. The essential

part in gene expression as well as in virtually every process on the cellular level

is carried out by proteins, large biomolecular objects consisting mainly from the

amino acids. In most mathematical models concerning gene expression, we focus

on the first and the most important step of gene expression, the transcription. A

special type of proteins, called transcription factors, possesses crucial functionality

in this process as they activate transcription by binding to specific DNA sequences.

The result of transcription is a primary RNA transcript; following the next steps of

gene expression we ultimately obtain a functional protein. For further biological

insight we refer to [28].

Biochemical reactions can be studied using a number of different mathemati-

cal formalisms and we can distinguish between the two main approaches. The

first, deterministic, approach exploits deterministic ODE models to describe the dy-

namics of biochemical reactions. An alternative way to study biological systems is

through stochastic models which consider each reaction as a single random event.

The advantage of this approach is the fact that these models describe the behavior

of the system well also at lower numbers of the involved species, as is the case

for the number of proteins and other species present in the biological processes

inside the cells such as gene expression [12, 48]. Therefore, deterministic mod-

elling of such reactions can be quite inaccurate and we turn instead to stochastic

methods [32]. As they work with discrete number of molecules, they can easily

be simulated through stochastic simulation algorithms, in particular the Gillespie

algorithm [19, 20].

Being a very timely topic, gene expression sparked a new wave of interest in

Markovian models of chemical kinetics, e.g. [44]. In this thesis we present a

simplified model in which we neglect the intermediary processes associated with

v



mRNA creation and focus solely on protein production. We assume that the pro-

tein is produced with a constant rate and that the rate of its decay is propor-

tional to the number of proteins. We study the protein dynamics in presence of

so-called decoy binding sites [52, 31] on the DNA. Our model further takes into ac-

count protein binding/unbinding reactions with these binding sites. Similar mod-

els have already been studied previously; in particular [18] investigated the model

with protected complexes, i.e. the case when bound proteins were immune to

degradation, showing that the steady-state distribution is Poissonian. Our model

allows bounded proteins to degrade, which introduces additional noise into the

model [5, 7]. For simplicity, we ignore effects of burst-like protein synthesis or

transcriptional auto-regulation [5, 8, 46]. Unfortunately, as is often the case, the

solution of free protein probability distribution cannot be obtained in a closed form.

However, we can employ the fact that biochemical reactions often operate on differ-

ent timescales [40, 47] to address the issue. History of applying these assumptions

in stochastic modelling is rather new [9], but in recent years were thoroughly in-

vestigated in works such as [25, 23, 24]. Particularly, in the context of our model,

the interactions between the protein and its binding sites occur on a substantially

faster timescale than the production and decay of protein does [2]. Therefore we

can successfully use singular perturbation methods [9, 38, 39] to obtain the quasi-

steady-state solution to our problem.

Let us now go through the structure of the thesis. In the first chapter we sum-

marise all the useful definitions from the fields of probability and differential equa-

tions, which we use in later parts of the thesis. In chapter two we focus on the

theory regarding deterministic and stochastic modelling of biochemical reactions

together with a couple of illustrative examples. Particularly, we present the exam-

ple of deterministic approach together with the foundations of stochastic simulation

of chemical reactions as well as numerical stochastic simulation algorithms used to

simulate the system. The main results of the thesis follow afterward; most material

of chapters three and four is also presented in the article [21]. In the third chap-

ter, we derive the Master equation for our stochastic model and deploy a singular

perturbation reduction to obtain quasi-steady-state approximations; this includes

finding an equilibrium of binding/unbinding reaction, which is a specific case of a

reversible bimolecular reaction studied by Laurenzi in [29]. We provide an alter-

native proof using mathematical induction. Using quasi-steady-state solution we

are able to calculate the statistical properties and moments of the free protein dis-

tribution in the equilibrium. It follows that for large amounts of binding sites, the

vi



free protein distribution is in fact Poissonian. Also, using three different methods

we study the time evolution of the amount on both free and total protein and com-

pare the results. In the fourth chapter we introduce the linear noise approximation,

a tool with which the probability distribution can be obtained in the asymptotic

case of large size of the system (as proposed in [49]). Using such an approxima-

tion, we derive the expression of Fano factor in a very simple form. Afterwards

we investigate the quality of this approximation with respect to the results from

the third chapter. In the last chapter we study another model also associated with

gene expression, which considers the interactions between mRNA and microRNA

molecules and the silencing effect on the population of mRNA. Information in this

chapter are part of the article [6] which is currently submitted for publication.

vii



CHAPTER 1

Preliminaries and Definitions

In this chapter we introduce a number of basic definitions and principles from the

fields of probability and differential equations, which will be essential later in the

thesis.

1.1 Probability

The case of stochastic simulation of chemical reaction is very closely connected

to discrete probability distributions, as we simulate the numbers of molecules as

they individually are. Therefore we work with integer amounts of molecules and

use summation operations to obtain information about the distribution. In case

of deterministic modelling or in specific asymptotic cases of stochastic models we

deal mainly with the concentration of species and thus we also need to mention

continuous probability distributions; for these we have to calculate integrals. Let us

introduce some of the most common distributions and methods used and referred

to later in the text. As the need to estimate parameters of the distribution from

the sample observations will arise later in the text, we also mention the theory

regarding the Maximum Likelihood Estimator (MLE). The information summarised

here is based mostly on [10] and [22].

1.1.1 Discrete probability distributions

Let us consider a random process, such that its particular events occur with a known

constant rate and independently of the time since the previous event. Examples of

such processes can be customers arriving to the desk, dysfunctions of a server or in

our case chemical reactions. The number of occurrences of a chosen phenomenon

in a time interval is then based on Poisson distribution and such process if often

1



referred to as Poisson process. This distribution is parametrized by a rate parameter

λ which also represents the average number of events in unit time interval. A

random variable X, taking values in the set of non-negative integers, has a Poisson

distribution if

P (X = x|λ) =
λxe−λ

x!
, x = 0, 1, . . . .

The first and second moments of X are E(X) = V ar(X) = λ. In the text we often

use another notation, often used in the field of mathematical biology, referring to

the expected value of X as 〈X〉. The Poisson distribution arises in the non-bursting

case of protein production.

Perhaps the most trivial case of probability distribution is the Bernoulli distribu-

tion, which is based on the Bernoulli trial, an experiment with only two possible

outcomes

X =

1 (success), with probability p,

0 (failure), with probability (1-p),
0 ≤ p ≤ 1.

Two widely used discrete probability distributions are based on Bernoulli trials.

At first, let us define a random variable, which tells us how many successes we

get out of n identical independent Bernoulli trials with probability p. We say that

such variable has binomial distribution with parameters p, n and probability mass

function

P (X = x|n, p) =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.

The first two moments of binomial distribution are given by 〈X〉 = np and V ar(X) =

np(1− p).

Secondly, let us define another random variable as the number of Bernoulli trials

necessary to get a fixed number of successes. It is known as the negative binomial

distribution and depends on two parameters, the probability of Bernoulli trials p

and the number of successes r we require to happen. We can write

P (X = x|r, p) =

(
x− 1

r − 1

)
pr(1− p)x−r, x = r, r + 1, . . . .

Sometimes we can also use an alternative expression and model the number of

failures Y before the r-th success instead. In this case we realize the relation Y =

X − r hold, obtaining

P (Y = y|r, p) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, . . . .

2



The moments of the negative binomial distribution (case with the specified number

of failures Y ) are as follows: 〈Y 〉 = r (1−p)
p

and V ar(Y ) = r (1−p)
p2

. The special case of

negative binomial distribution when r = 1 is called the geometric distribution. We

meet this distributions often in cases when the production of some chemical species

occurs in a bursting regime.

For the next distribution, suppose we have a box with N identical balls, except

that M are red and N −M are green. We blindly reach in and draw K balls at

random, without replacement. We would like to express the probability that exactly

x of the balls are red. If we denote the number of red balls in a sample of size K as

X, then random variable X has a hypergeometric distribution given by

P (X = x|N,M,K) =

(
M
x

)(
N−M
K−x

)(
N
K

) , x = 0, 1, . . . , K.

The moments of hypergeometric functions can be obtained (after quite tedious cal-

culations) as 〈X〉 = KM
N

and V ar(X) = KM
N

(
(N−M)(N−K)

N(N−1)

)
.

A very powerful tool used in the field of discrete probability is the method of gen-

erating functions [26]. The generic generating function for a sequence {g0, g1, . . .}
has the form

G(s) =
∑
n≥0

gns
n.

In case of probability generating function (PGF) we can replace gk by P (X = k) and

write

G(s) =
∑
n≥0

P (X = n)sn.

If we know the functional form of generating function G, we can expand the for-

mula using Taylor expansion in terms of s and obtain the probability P (X = k) as

the coefficient in front of sk, i.e.

P (X = k) =
1

k!

dkG(s)

dsk

∣∣∣∣
s=0

.

One of the applications of the PGF is the computation of various statistical moments

of a given distribution, mainly the following:

µ′r = 〈Xr〉 (r-th uncorrected moment),

µr = 〈(X − 〈X〉)r〉 (r-th central moment),

µ(r) = 〈X!/(X − r)!〉 (r-th factorial moment).

3



From the computational point of view, most of the time it is easiest to calculate the

factorial moments of distribution from the corresponding PGF using the formula

µ(r) =
drG(s)

dsr

∣∣∣∣
s=1

.

Most used statistical moments, the mean and the variance, can be expressed from

the factorial moments as follows:

〈X〉 = µ(1),

V ar(X) = µ(2) + µ(1) − µ2
(1).

(1.1)

Probability generating functions are also a strong tool when dealing with the

convolutions of random variables. For the sum of random variables X and Y we

have

GX+Y (s) = GX(s)GY (s), if X and Y are independent. (1.2)

Generating functions for the most used probability distributions are well-known;

let us summarize them briefly:

• Poisson distribution: G(s) = e〈X〉(s−1)

• Bernoulli distribution: G(s) = (1− p) + ps

• Binomial distribution: G(s) = ((1− p) + ps)n

• Negative binomial distribution: G(s) =
(

ps
1−(1−p)s

)r
, |s| < 1

1−p

• Hypergeometric distribution: G(s) =
(N−M

K )2F1(−K,−M ;N−M−K+1;s)

(NK)

Results for binomial distribution can easily be verified combining Bernoulli distri-

bution and (1.2). More information about the hypergeometric function 2F1 from

the last PGF together with hypergeometric functions in general form is outlined in

Section 1.2.2.

1.1.2 Continuous probability distributions

The gamma family of distributions is a flexible family defined on [0,∞) and is closely

related to gamma function, which is defined for a positive constant α as the integral

Γ(α) =

∞∫
0

tα−1e−tdt.

4



For the most values of α we cannot find closed form of gamma function, but it

satisfies many useful relationships, in particular,

Γ(α + 1) = αΓ(α). (1.3)

Combining (1.3) with the trivial case Γ(1) = 1, we get for any integer n > 0,

Γ(n) = (n− 1)!.

Using (1.3) we obtain recursion relation which allows us to calculate value of any

gamma function from knowing the value Γ(c), 0 < c ≤ 1.

The full gamma family is characterized by two parameters, α and β; the proba-

bility density function (PDF) of gamma(α, β) distribution is given as

f(x|α, β) =
1

Γ(α)βα
xα−1ex/β, 0 < x <∞, α > 0, β > 0. (1.4)

The parameter α is known as the shape parameter and β is often called the scale

parameter of the distribution. The mean of the distribution (1.4) can be calculated

as 〈X〉 = αβ and its variance as V ar(X) = αβ2.

Choosing particular values for α and β, we arrive at various special cases of the

gamma family. If we fix α = 1, we get the so-called exponential distribution. This

distribution is closely related to Poisson processes as it represents the distribution

of an expected time interval between two random events in such a process. The

probability density function (PDF) of an exponential distribution has the form

f(X|β) =

 1
β
e−

x
β , x ≥ 0

0 , x < 0.

The parameter β can be represented as λ−1, where λ is the rate of the corresponding

Poisson process. It follows that the moments of an exponential distribution are

〈X〉 = β = λ−1 and V ar(X) = β2 = λ−2.

Other special cases of the gamma family are the chi-squared distribution (α =

p/2, p ∈ N, and β = 2) and Erlang distribution (α ∈ N).

The normal distribution (sometimes called also the Gaussian distribution) is a

continuous probability distribution with two parameters µ and σ2, which are also

its mean and variance. The PDF of a normal distribution with mean µ and variance

σ2, denoted as N (µ, σ2), is given by the formula:

f(x|µ, σ2) =
1√
2πσ

e
(x−µ)2

2σ2 .
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One of the many situations where normal distribution comes into play is the ran-

dom noise in the stochastic processes, Brownian motion, or diffusion.

We can describe the time evolution of the probability density function of various

phenomena in chemical or physical mathematics by a partial differential equation,

which is commonly known as the Fokker-Planck equation. In the field of stochas-

tic processes, one of the most basic examples is the so-called Ornstein-Uhlenbeck

process, which is defined as follows:

dXt = −aXtdt+ σdWt,

whereWt is a standard Wiener process (see [37]) and 0 < a < 1. The Fokker-Planck

equation corresponding to this process has the form

∂p(x, t)

∂t
= a

∂

∂x
(xp(x, t)) +

σ2

2

∂2p(x, t)

∂x2
.

This Fokker-Planck equation is linear in p and autonomous, as a and σ does not

change over the course of time and therefore we already know the stationary solu-

tion ∂tp = 0 for the probability distribution, which is Gaussian and given by

p(x, t) =

√
a

πσ2
e−

ax2

σ2 .

1.1.3 Maximum Likelihood Estimator

We use the method of maximum likelihood as it is one of the most popular tech-

niques to obtain a parameter estimator from an observed random sample. Let

us assume we observe an IID (independent and identically distributed) sample

X1, X2, . . . , Xn from a population with PDF or PMF f(x|θ1, θ2, . . . , θn). Then the

corresponding likelihood function is defined by

L(θ|x) = L(θ1, θ2, . . . , θn|x1, x2, . . . , xn) =
n∏
i=1

f(xi|θ1, θ2, . . . , θn).

The log-likelihood function l(θ|x) = (lnL(θ|x)) is often used instead. For each

sample point x, let θ̂(x) be a parameter value in which L(θ|x) (or l(θ|x)) attains its

maximum as a function of θ with x kept fixed. A maximum likelihood estimator

(MLE) of the parameter θ based on sample X is θ̂(X).

Let us now derive the MLE for the sample from the Poisson distribution. For n

independent observations drawn from the Poisson distribution, we can write likeli-

hood function as the product of individual PMF’s as

L(λ|x1, x2, . . . , xn) =
n∏
i=1

e−λ
λxi

xi!
,
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and thus the log-likelihood function as

l(λ|x1, x2, . . . , xn) = −nλ+ ln(λ)
n∑
i=1

xi −
n∑
i=1

ln(xi!).

The first-order condition for the maximum is

∂

∂λ
l(λ|x1, x2, . . . , xn) = −n+

1

λ

n∑
i=1

xi = 0,

which implies a solution

λ̂ =
1

n

n∑
i=1

xi.

It is nothing else than the basic sample mean. This made intuitive sense as expected

value of a random Poisson variable equals to the value of λ parameter of Poisson

distribution.

1.1.4 Statistical distance

When we try to approximate one probability distribution with another, important

question is how to evaluate the quality of the approximation as some kind of ‘dis-

tance’ between these two distributions. There exist a variety of such functions.

Some statistical distance measures are not metrics and they need not be symmet-

ric. We are interested in measuring distance between discrete distributions and

therefore we focus on formulas for such distributions. The continuous case can

be derived analogously by changing the sums to integrals. Let us present a brief

introduction to the most popular measures.

• Total variation distance: δ(P,Q) = max
i

(P (i)−Q(i)).

• Kullback–Leibler divergence: DKL(P‖Q) =
∑
i

P (i) ln P (i)
Q(i)

.

• Hellinger distance: H(P,Q) = 1√
2

√∑
i

(√
P (i)−

√
Q(i)

)2

.

• Rényi’s divergence: Dα(P‖Q) = 1
α−1

ln

(∑
i

P (i)α

Q(i)α−1

)
.

• Jensen–Shannon divergence: JSD(P‖Q) = 1
2
DKL(P‖M) + 1

2
DKL(M‖Q),

where M = 1
2
(P +Q).

• Bhattacharyya distance: DB(P,Q) = − ln

(∑
i

√
P (i)Q(i)

)
.
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In our thesis we use Bhattacharyya distance [4] as the measure of statistical dis-

tance for its symmetry and relative simplicity (but a better descriptive power than

Total variation distance). As expected, DB = 0 implies identical distributions and

DB = 1 implies mutually exclusive distributions.

1.1.5 Law of total variance

This law is also sometimes refereed to as Eve’s law or variance decomposition for-

mula. It states that if X and Y are random variables on the same probability space

with the requirements of finite variance for Y , then the following formula holds:

V ar(Y ) = E (V ar(Y |X)) + V ar (E(Y |X)) .

In other words, total variance can be expressed as the sum of the expectation of

conditional variances and the variances of conditional expectations. Its proof uses

another useful law, law of total expectation and both can be found in [50].

1.2 Differential equations

Let us summarise some basic methods of solving ordinary differential equations

(ODEs) and partial differential equations (PDEs), which will arise later in this the-

sis. Theory for the PDE part is based on [41] and in the hypergeometric ODE part

we cite [22].

1.2.1 Quasilinear PDE

In this part we present a method to solve linear and quasilinear PDE as we use them

in the next chapters.

We call a linear homogenous PDE an equation in the form

a1(x)
∂u

∂x1

+ a2(x)
∂u

∂x2

+ . . .+ an(x)
∂u

∂xn
= 0, (1.5)

where a1, a2, . . . , an : Rn × R 7→ R are given continuous functions. The problem

consists of finding a C1 smooth function u : Ω ⊂ Rn 7→ R such that in every point

of Ω (1.5) holds. Finding a solution of (1.5) is based on the so-called characteristic

system, which is a system of ordinary differential equations in Rn in the formẋ(τ) = ~a(x(τ)), τ ∈ R,

x(0) = x0 ∈ Rn.
(1.6)
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The function u is a solution of the system (1.5) if and only if u is constant on every

characteristic, i.e. on every solution of characteristic system (1.6).

Now, let us consider a general quasilinear first-order equation, which has the form

a1(x, u)
∂u

∂x1

+ a2(x, u)
∂u

∂x2

+ . . .+ an(x, u)
∂u

∂xn
= an+1(x, u), (1.7)

with the equivalent conditions for a and u as in (1.5). The idea of solving quasilin-

ear equation (1.7) is in the construction of an auxiliary linear homogenous equation

in the form

a1(x, u)
∂w

∂x1

+ a2(x, u)
∂w

∂x2

+ . . .+ an(x, u)
∂w

∂xn
+ an+1(x, u)

∂w

∂u
= 0. (1.8)

A link between equations (1.7) and (1.8) can be epitomised in the following condi-

tions.

a) w(x, u(x)) = const for each x ∈ Ω ⊂ Rn,

b) ∂w
∂u

(x, u(x)) 6= 0 for each x ∈ Ω ⊂ Rn.

If these two requirements are fulfilled, then u is a solution of equation (1.7) on the

set Ω. Further information, such as proofs of the mentioned propositions, together

with some other useful information about different types of PDEs and their solution

methods can be found in [41]. For more extensive information about PDEs we refer

to [16].

1.2.2 Hypergeometric functions and ODEs

A hypergeometric series can be formally defined as a power series

β0 + β1z + β2z
2 + . . . =

∑
n≥0

bnz
n,

in which the ratio of successive coefficients is a rational function of n. That is,

βn+1

βn
=
A(n)

B(n)
,

where A(n) and B(n) are polynomials in variable n.

Let us consider the most simple example, the series for the exponential function

ez = 1 +
z

1!
+
z2

2!
+
z3

3!
+ . . . =

∑
n≥0

zn

n!
. (1.9)
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In series (1.9) we have chosen βn = 1
n!

, which implies βn+1

βn
= 1

n+1
and thus A(n) = 1

and B(n) = n+ 1. Series (1.9) can be denoted as hypergeometric function 0F0(z).

In generalised form, hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z) has the

form

pFq(a1, . . . , ap; b1, . . . , bq; z) = 1 +
a1 · · · ap
b1 · · · bq

· z
1!

+
a1(a1 + 1) · · · ap(ap + 1)

b1(b1 + 1) · · · bq(bq + 1)
· z

2

2!
+ . . . .

(1.10)

Let us define the notation for the rising factorial or Pochhammer symbol as

(a)0 = 1,

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), n ≥ 1.
(1.11)

Using (1.11) we can rewrite (1.10) as

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

· z
n

n!
.

The history of hypergeometric functions can be traced back to 1769 and the

work of Euler, [14], where he mentioned the hypergeometric differential equation

in the form

x(1− x)
d2y

dx2
+ (c− (a+ b+ 1)x)

dy

dx
− aby = 0,

which has three regular singular points: 0, 1 and ∞. A solution to this equation

is the hypergeometric function 2F1(a, b; c; z), which was introduced by Gauss [17]

and is often refereed to as the Gaussian hypergeometric function.

In the general form, pFq(a1, . . . , ap; b1, . . . , bq; z) is the regular solution of the dif-

ferential equation in the form

x(θ + a1)(θ + a2) . . . (θ + ap)y = θ(θ + b1 − 1)(θ + b2 − 1) . . . (θ + bq − 1)y, (1.12)

where θ stands for differential operator in the form x d
dx

.
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CHAPTER 2

Biochemical Reactions

In this chapter we present two main approaches to the study of biochemical reac-

tions. The first, deterministic, approach works mainly with the concentrations of

the chemical species in the system. The second, stochastic, approach works with

the discrete number of molecules and seeks to find the probability distribution as a

function of time for the given species.

2.1 Deterministic approach

Let us illustrate the basic methods and tools used in this section of mathemati-

cal biology on the one of the most basic enzymatic reactions, first mentioned by

Michaelis and Menten in 1913 [33] and studied in many works including [27] and

[11]. We also introduce here the idea of different timescales and quasi-steady-state

approximation. Our main source for this part is [34], which provides an extensive

introduction into this field.

The reaction of our interest involves substrate S, enzyme E; together they form

a complex SE, which can be converted into the product P plus the enzyme E.

S + E
k1−−⇀↽−−
k−1

SE
k2−→ P + E. (2.1)

A both-ways arrow symbolises the fact that the first reaction is reversible; the sec-

ond reaction can only go forward, which is represented by a single arrow. Param-

eters k’s are rate constants associated with the individual reactions. We call E a

catalyst as it is conserved in the overall course of the reaction. Our goal is to write

down differential equations describing the kinetics of system (2.1). We use the Law

of Mass Action, which says that the rate of a given reaction is proportional to the

product of the concentrations of the reactants. A conventional way how to refer to
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a concentration is using []; for the sake of brevity let us use lowercase letters to

denote the concentrations (we use lowercase letters to denote concentrations also

in the further parts of this thesis):

s = [S], e = [E], c = [SE], p = [P ].

Applying the Law of Mass Action to (2.1) we obtain the system of nonlinear reaction

equations (one for each reactant):

ṡ = −k1es+ k−1c,

ė = −k1es+ (k−1 + k2)c,

ċ = k1es− (k−1 + k2)c,

ṗ = k2c,

(2.2)

where ẋ refers to the derivation with respect to time
(

dx
dt

)
as usual. To complete the

formulation of the problem, we have to provide initial conditions for the system.

Let us say we start with non-zero amounts of enzyme E and substrate S only, i.e.

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0. (2.3)

The solution of (2.2) together with (2.3) gives us the concentrations as the func-

tions of time. We have to take into account also obvious non-negativity condition

for the concentrations.

The last equation is easy to solve: we can express the concentration of product

as

p(t) = k2

t∫
0

c(τ)dτ,

which implies that as soon as we know c(t), we can compute also p(t), and thus we

need to solve just first three equations. As we mentioned earlier, enzyme E acts as

catalyst in the system (2.1) and thus its concentration should be constant during

the process. If we realize that E can exist either in free state (E) or in bounded

state (SE), we can write the conservation law for its concentration as

ė+ ċ = 0, i.e. e+ c = const = e0.

Applying this, the system of ODEs is reduced to only two equations, let us take s

and c as our independent variables and rewrite the system as

ṡ = −k1e0s+ (k1s+ k−1)c,

ċ = k1e0s− (k1s+ k−1 + k2)c,
(2.4)
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subject to the initial conditions

s(0) = s0, c(0) = 0.

An usual approach to solving chemical reactions utilises the assumption that one

‘fast’ reaction is essentially always at equilibrium. This procedure is referred to as

the pseudo- or quasi-steady-state approximation. In this case, we set dc/dt ≈ 0;

using this fact together with (2.4) yields

c(t) =
e0s(t)

s(t) +Km

, (2.5)

where

Km =
k−1 + k2

k1

is called the Michaelis constant. If we substitute (2.5) back to (2.4) we obtain

ds

dt
= − k2e0s

s+Km

.

Since the amount of enzyme is considered to be small compared to the amount of

substrate we can assume s0/e0 = ε � 1 and obtain an implicit solution for the

substrate:

s(t) +Km ln s(t) = s0 +Km ln s0. (2.6)

We can easily check that (2.5) does not satisfy the condition c(0) = 0. We can

distinguish between two timescales in the system, the initial timescale near t = 0

when the level of complex rises quickly and the longer timescale when the amount

of complex is well approximated by (2.5) with s(t) determined by (2.6). Therefore

we consider it to be a reasonable approximation of the solution and mainly focus

on situations in which we can use it.

2.2 Stochastic approach

Deterministic approach works with the concentration of individual chemical species,

which assumes that system size is large. On the contrary, truth is that the number

of proteins expressed from a single gene can often be quite small [53]; it would

therefore be inaccurate to treat reactants as continuous variables as in determinis-

tic approach. Answer to this problem is stochastic approach, in which each species

is modeled as a discrete random variable and each reaction as a random event with

a given probability of occurrence. It is not even uncommon to observe even less

than 10 copies of protein species per E. coli cell [48], therefore we work with mean
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number of proteins below 100 in this thesis. As the amount of species is represented

with discrete variables it is possible to simulate these reactions through simulation

algorithms (special versions of Monte Carlo simulations) to approximate probabil-

ity distribution in a given time. These simulations were pioneered by Joseph L. Dool

as early as around 1945, but only gained proper recognition after publishing of the

paper by Gillespie [19] in 1976; therefore they are usually referred to as Gillespie

algorithm. The same author next year (1977) in [20] used the algorithm to simu-

late systems of biochemical reactions. A nice summary with the focus on practical

approach was given in [13], which is also one of the main sources for this section

together with [49]. It contains exhaustive amount of information about chemical

reactions, enzyme kinetics and related stochastic theory.

2.2.1 Simple case

First, let us consider the most simple case of reaction, degradation of chemical

species A,

A
k−→ ∅. (2.7)

The symbol ∅ is often used to represent the chemical species which are outside

of our interest. The letter k stands for the rate constant of the reaction and it

is defined as following: probability, that a randomly chosen molecule of species

A reacts during the time period [t, t + dt) equals kdt. Therefore the probability

that exactly one reaction happens in the whole amount of species A in time interval

[t, t+dt) is A(t)kdt, where A(t) represents the number of molecules A in the system

at time t. The probability that two or more reactions occur during the time period

[t, t+dt) is o(dt2) and thus can be disregarded as 0. A naive approach to numerically

simulate this problem would be to choose sufficiently small time step ∆t, generate a

random number r, uniformly distributed in (0, 1) and if r < A(t)k∆t, then reaction

occurs and A(t + ∆t) = A(t)− 1. It comes with obvious defects that in most of the

time steps ∆t no reaction occurs, so we generate a tremendous amount of random

numbers for no reason at all.

A much better approach would be to always determine the time t+ τ , when the

next reaction takes place. Let us first denote the probability that the next reaction

occurs during time interval [t + s, t + s + ds) as f(A(t), s)ds, (ds is infinitesimally

small). Furthermore, let us define the probability that no reaction takes place in

period [t, t+ s) as g(A(t), s). These two expressions are connected to each other by
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the following formula:

f(A(t), s)ds = g(A(t), s)A(t+ s)kds.

As no reaction takes place between t and t + s, it implies that A(t + s) = A(t) and

we can proceed with

f(A(t), s)ds = g(A(t), s)A(t)kds. (2.8)

Since we want to better understand the term g(A(t), s), let us take σ > 0. As no

reaction happens in [t, t+σ+ dσ), we know that no reaction can happen in [t, t+σ)

and also in [t+ σ, t+ σ + dσ). We can write

g(A(t), σ + dσ) = g(A(t), σ)(1− A(t)kdσ)

and with some rearrangements we obtain

g(A(t), σ + dσ)− g(A(t), σ)

dσ
= −A(t)kg(A(t), σ).

Now if we take the limit of dσ → 0, we arrive at the following ordinary differential

equation
dg(A(t), σ)

dσ
= −A(t)kg(A(t), σ),

which is subject to the obvious initial condition g(A(t), 0) = 1. This ODE has a

solution

g(A(t), σ) = e−A(t)kσ.

We can substitute it into (2.8) and we obtain

f(A(t), s) = A(t)ke−A(t)kσds. (2.9)

To change the problem of generating time τ ∈ (0,∞), when the next reaction

(2.7) occurs, into the problem of generating a uniformly distributed number in the

interval (0, 1), let us consider the function F , defined as

F (τ) = e−A(t)kτ . (2.10)

To prove that, the probability that F (τ) ∈ (a, b) has to be equal to the probability

that τ ∈ (F−1(b), F−1(a)). Using (2.9) and (2.10) we get

F−1(a)∫
F−1(b)

f(A(t), s)ds =

F−1(a)∫
F−1(b)

A(t)ke−A(t)ksds
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= −
F−1(a)∫
F−1(b)

dF

ds
ds = −F (F−1(a)) + F (F−1(b)) = b− a

which proves the statement. It implies that we can generate the time step τ by

putting r = F (τ), where r is random number, uniformly generated in (0, 1). Using

(2.10), we can write

r = e−A(t)kτ

and solving the equation for τ , we obtain

τ =
1

A(t)k
ln

(
1

r

)
. (2.11)

Stochastic simulation algorithm for the reaction (2.7) can be written down in the

following steps we perform in each time t:

1) Generate a random number r uniformly distributed in (0, 1).

2) Time, when the next reaction happens is given by t+ τ , where τ is computed

using (2.11).

3) Number of molecules A(t+ τ) is given by A(t)− 1.

Three realizations of the provided algorithm with initial conditions A(0) = 20 and

k = 0.1 are illustrated in the Figure 2.1.

Figure 2.1: Simulated trajectories of degradation using Gillespie algorithm.

Let us now take a look on the probability distribution of chemical species A at

the time t, let us denote P (A(t) = n) as Pn(t) for the sake of simplicity. There are
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two possible ways, how A(t+ dt) can be equal to n, either A(t) = n and no reaction

happened in the period [t, t + dt), or A(t) = n + 1 and a degradation reaction

occurred in the period [t, t+dt). The probability that two or more reactions occurred

in the period [t, t + dt) can be neglected. We can express these observations in the

form of equation as

Pn(t+ dt) = Pn(t) · (1− kndt) + Pn+1(t) · k(n+ 1)dt,

which can be rewritten as

Pn(t+ dt)− Pn(t)

dt
= Pn+1(t) · k(n+ 1)− Pn(t) · kn.

Sending dt→ 0 we obtain a set of ODEs for the probabilities in the form

Ṗn(t) = k(n+ 1)Pn+1(t)− knPn(t). (2.12)

The set of equations (2.12) is called a chemical Master equation or simply a

Master equation of reaction (2.7). The term Master equation is very old as it first

appeared in the paper [35] from 1940 in which it had a function of main equation

from which all other results were derived.

Let us introduce a couple of techniques to obtain more information about the

probability distribution of A given by P . If we introduce initial condition A(0) = n0

(resp. Pn = δn,n0 where δ stands for Kronecker delta) to the system, we can set

Pn = 0 for all n > n0 as only degradation is possible. This will leave us with the

marginal term in the Master equation in the form

Ṗn0(t) = −kn0Pn0(t),

which together with the initial conditions yields the result

Pn0(t) = e−kn0t.

With known value of Pn0 it is possibly to explicitly express the value of Pn0−1 and

we can continue with this algorithm all the way to P0, until all Pn’s are known. This

naive way of solving can only be used if no production of A is present. As soon as

we introduce it to the system, we can no longer find an upper bound for possible

value of A and thus the Master equation becomes an infinite set of ODEs.

Another possible approach can be used if we are not necessarily interested in

whole distribution of A, but we care for its statistical moments, in particular the
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mean and the variance; let us denote them as M(t) and V (t) for this example. They

can be calculated from the probabilities as follows:

M(t) =
∑
n

n · Pn, V (t) =
∑
n

(M(t)− n)2 · Pn, (2.13)

where
∑
n

is the abbreviated symbol for summing over all possible values of n.

In order to derive M(t) from (2.12), let us introduce the following widely used

transformation of equations; we multiply both sides of an equation by n and after-

ward sum them with respect to all possible values of n to obtain∑
n

nṖn = k
∑
n

n(n+ 1)Pn+1 − k
∑
n

n2Pn. (2.14)

Another useful trick is to make use of the fact that the summing is performed

through all values of n and thus we can shift the value of n inside the sum to n+ k

without changing the value of the sum (i.e.
∑
n

nṖn+1 =
∑
n

(n− 1)Ṗn). Applying this

together with (2.13) we can simplify (2.14) as follows:

Ṁ(t) = k
∑
n

(n− 1)nPn − k
∑
n

n2Pn

= −k
∑
n

nPn = −k ·M(t).
(2.15)

Using the separation-of-variables method together with the aforementioned initial

condition M(0) = n0, we can write the solution of (2.15) as

M(t) = n0e
−kt.

In order to obtain the value of V (t), let us express the value of
∑
n

n2Pn with the

help of the values of mean and variance as∑
n

n2Pn = V (t) +M2(t);

after applying the time-derivative we obtain∑
n

n2Ṗn = V̇ (t) + 2M(t)Ṁ(t).

Now we can multiply both sides of the equation by n2 and sum them through all

values of n to rewrite (2.12) as∑
n

n2Ṗn = k
∑
n

n2(n+ 1)Pn+1 − k
∑
n

n3Pn,
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∑
n

n2Ṗn = k
∑
n

(−2n2 + n)Pn.

Using the formulas for mean and variance we can transform the equation to obtain

non-homogenous linear ODE for the V (t) in the form

V̇ (t) + 2M(t)Ṁ(t) = −2kV (t)− 2kM2(t) + kM(t),

V̇ (t) = −2kV (t) + kn0e
−kt,

together with the initial condition V (0) = 0 (as Pn = δn,n0). An ODE in this form

can be solved using the method of variation of constants to obtain

V (t) = n0e
−kt + Ce−2kt,

which together with the initial condition for V yields

V (t) = n0

(
e−kt − e−2kt

)
.

However, we are often unable to use an analogous approach for more complex

forms of the Master equation and have to settle for some approximated solution.

2.2.2 General case

Now, let us assume we have J different chemical compounds X1, X2, . . . , XJ in

our system. A typical reaction in such system is given by a set of stoichiometric

coefficients sj, rj as

s1X1 + s2X2 + . . . sJXJ

k+−⇀↽−
k−

r1X1 + r2X2 + . . . rJXJ (2.16)

In a stochastic formulation we assume all possible system states to be lattice points

on a J-dimensional lattice. This set of accessible points is given by the coeffi-

cients si and ri. For two points accessible from each other, we say they satisfy the

equivalence relation called the stoichiometic compatibility [15]. A two-dimensional

example is given in Figure 2.2.

Zero values of sj and rj are permitted. If sk = rk 6= 0, we call the corresponding

Xk a catalyst. The reaction associated with the rate constant k+ is called a forward

reaction, and the reaction associated with rate constant k− is referred to as a re-

verse reaction. The probability that a forward reaction occurs in [t, t + dt) is given

as f+(t, dt) = k+

J∏
i=1

((Xi(t)))
sidt, where ((X))s stands for X!

(X−s)! . Analogously, for a
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Figure 2.2: Possible states of X and Y following reaction 2X −⇀↽− Y .

reverse reaction we have the probability f−(t, dt) = k−
J∏
i=1

((Xi(t)))
ridt. The proba-

bility that more than one reaction occurs in an infinitesimally small interval dt can

be assumed to be zero; and therefore the probability that some reaction occurs in

[t, t + dt) is given as α(t)dt = f−(t, dt) + f+(t, dt). In case we have more reactions

in the form (2.16), we sum up probabilities for all of them together. Using (2.11)

we can define the time when the next reaction takes place in general case as

τ =
1

α(t)
ln

(
1

r

)
, (2.17)

where α(t) is defined as the probability coefficient for dt: the probability that any

reaction occurs in [t, t + dt) is α(t)dt. A new problem which did not concern us

in the simple case is now to determine which reaction takes place in time t + τ .

To determine that, we can generate another uniformly distributed random num-

ber r2. If r2 is uniformly distributed on (0, 1), r2α(t) is uniformly distributed on

(0, α(t)); as α(t) =
k∑
i=1

fi (by fi we mean both forward (f+
i ) and backward (f−i )

reactions; and we removed dt from both sides of the equation), the probability that

the value α(t)r2 will fall to the interval
(

j∑
i=1

fi(t),
j+1∑
i=1

fi(t)

)
is equal to fj+1(t). We

can summarise the algorithm into four steps that we perform iteratively:

1) Generate two random numbers r1, r2 uniformly distributed in (0, 1).

2) Time when the next reaction happens is given by t + τ , where τ is given

by (2.17) with r1 in place of r.

2) Which reaction occurs in time t + τ is determined by r2, according to the

interval into which r2α(t) falls.
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4) Number of molecules for each species Xi(t+ τ) is given by Xi(t) + (si− ri) for

the forward reaction (or −(si − ri) for the reverse reaction).

Following the same rationale as for the simple case, we can also write down the

Master equation for reaction (2.16) as

Ṗn(t) =k+

(∏
j

Esj−rjj − 1

)∏
j

((nj))
sjPn(t)

+ k−

(∏
j

Erj−sjj − 1

)∏
j

((nj))
rjPn(t).

(2.18)

We use the shift operator E from [49] to keep the equation more compact. It is

defined (for given shift vector i = (i1, i2, . . . , iJ)) as follows:

Ei11 E
i2
2 . . .E

iJ
J f (n) = f (n + i) .

If more possible reactions occur in the system, the associated Master equation in-

cludes the sum of all such reaction terms. Therefore, it is often too complex for

solving it explicitly or gaining information about the statistical attributes than for

the simple case. In such situations we resort to combining numerical methods

(stochastic simulation or the numerical integration of the Master equation). We

will use this strategy in this thesis to study selected systems of reaction kinetics

pertaining to cellular biology.

21



CHAPTER 3

A model for gene expression in the

presence of decoy binding sites

In this chapter we describe a system of chemical reactions motivated by the dy-

namics of gene expression. We focus on the level of protein in the system which is

subject to interactions with decoy binding sites. We are taking into account a sim-

plified, non-bursting, regime of protein production. As we do not consider other

binding sites in this work, we can omit ’decoy’ from the notation and will refer to

them simply as binding sites (or BS). Our main goal is to investigate the distribu-

tions of free (i.e. unbound) and total protein (both bound and free) in the system.

In the beginning we write down associated Master equation. Then we focus on the

distribution of total protein. The main part of our analysis consists of performing

singular perturbation reduction to obtain quasi-steady-state solution for the free

protein distribution. We prove the correctness of the solution by mathematical in-

duction. Then we investigate the statistical characteristics of obtained distribution.

Finally we introduce two additional methods to obtain free protein distribution

and compare all of them using numerical simulations. Most of the chapter was also

presented in paper [21].

Let us introduce the following notation for our variables:

X - total protein, Xf - free protein,

Y - all binding sites, Yf - free binding sites,

C - complex (protein bound to the binding site).

We assume that three reversible reactions can take place:

1) Protein production/decay.

∅
k−⇀↽−
γ
Xf
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2) Protein binding/unbinding reaction.

Xf + Yf
k+−⇀↽−
k−

C

3) Decay of the complex (a free binding site is vacated).

C
γ−→ Yf

We use upper-case letters in italics to represent a number of corresponding species

throughout this thesis. We reserve the corresponding lower-case letter as a notation

for a concentration of a given species. In order to avoid confusion with X , we use

N instead of Xf as the number of free protein.

Although we have defined five different variables, the problem is in fact only

two-dimensional. First, we assume that the total number of binding sites (Y ) is

constant. Let us express the number of the remaining species in terms of X and N

(and constant Y ). The number of complexes is the same as the number of bound

protein. Therefore we get a relationship C = X − N . The number of free binding

sites is equal to the number of all binding sites without the sites which are included

in complexes, Yf = Y − C = Y − X + N .

3.1 Master equation for the non-bursting case

Let us have a look into the system using stochastic simulations. We assume the

case when one protein is created in each event of production. To make the notation

clearer, we introduce the abbreviation of P (X(t) = X , Xf (t) = N ) as PX ,N . The

Master equation corresponding to the system of reactions together with the non-

bursting case of production and degradation of X (in Xf as well as in C) assumes

the form

ṖX ,N = kPX−1,N−1 − kPX ,N

+ γ(N + 1)PX+1,N+1 − γNPX ,N

+ k+(N + 1)(Y − X + N + 1)PX ,N+1

− k+N (Y − X + N )PX ,N

+ k−(X − N + 1)PX ,N−1 − k−(X − N )PX ,N

+ γ(X − N + 1)PX+1,N − γ(X − N )PX ,N ,

(3.1)

Let us illustrate one stochastic simulation of such system by the Gillespie algo-

rithm (Y = 10, k = 3, γ = 0.1, k+ = 1, k− = 10), with no proteins at the
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beginning: PX ,N (0) = δX ,0δN ,0. The time evolution of each species can be seen in

Figure 3.1. It is easy to see that reactions affecting the amount of total protein in

the system are slow in comparison with the free protein level changes; we exploit

this observation later.

Figure 3.1: Simulation of the system using Gillespie algorithm.

3.2 Total protein distribution

In this section we use the equation (3.1) to obtain the distribution of all protein

(variable X ) in the system. In order to do so, let us remind that we obtain PX by

summing up all probabilities PX ,N for a given X , i.e. PX =
∞∑

N=0

PX ,N . So, in order

to get a differential equation for PX , let us use a well-known trick and sum up both

sides of the Master equation (3.1) with respect to N , from 0 to∞. In order to keep

it clear, we use the abbreviation
∑
N

. As the sum goes through all integers, we can

easily change all N − 1 to N etc. It causes the rows of (3.1), corresponding to the

binding/unbinding reaction, to cancel out, as the distribution of all protein in this
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reaction does not change. We obtain:

ṖX = k
∑
N

(PX−1,N − PX ,N )

+ γ
∑
N

N (PX+1,N − PX ,N )

+ γ

(∑
N

((X − N + 1)PX+1,N − (X − N )PX ,N )

)
,

which simplifies to

ṖX = k (PX−1 − PX ) + γ ((X + 1)PX+1 − XPX ) . (3.2)

A system of differential equations in this form can be solved using the method

of generating functions (see Section 1.1.1). In order to compute PX in this way we

multiply the equation by sX and we sum them over X and we get

∂

∂t

∑
X

sXP (X , t) = k

(∑
X

sXPX−1 −
∑
X

sXPX

)

+ γ

(
(X + 1)

∑
X

sXPX+1 − X
∑
X

sXPX

)
.

(3.3)

Now we use the definition of the generating function as G(s, t) =
∑
x

sxPx. By dif-

ferentiating this formula we can find an expression in terms of generating function

also for other terms of the equation as ∂G
∂s

=
∑
x

xsx−1Px. Knowing this we obtain

from (3.3) the following partial differential equation:

∂G

∂t
= k(s− 1)G+ γ(1− s)∂G

∂s
= (s− 1)

(
kG− γ ∂G

∂s

)
. (3.4)

First, let us take a look at the result at the steady state (t → ∞), in which case

we simplify the equation to kG = γ ∂G
∂s

. This can easily be solved by the separation

of variables and obtaining G(s) = Ce
k
γ
s. Now let us recall our generating function

definition, which at the steady state takes the form G(s) =
∑
x

sxP (x,∞), whereby

G(1) = 1 follows from the normalization condition. Hence C = e−
k
γ and we get

G(s,∞) = e
k
γ

(s−1).

According to the definition of generating function, the value of Px is equal to the

value of coefficient multiplying sx in the power series expansion of G(s). Taylor-

expanding the exponential gives us:

G(s) = e−
k
γ

∑
n

(
k
γ

)n
sn

n!
.

25



Therefore

PX =

(
k
γ

)X
e−

k
γ

X !
,

which is the Poisson distribution parametrized by λ = k
γ
. Using the fact that for the

mean we have 〈X 〉 = λ we can write

PX =
〈X 〉X e−〈X 〉

X !
.

As the problem (3.4) is a linear partial differential equation of the type we con-

sidered in Section 1.2.1, we can find a solution for some feasible initial condition.

Using the usual trick (1.7) we rewrite (3.4) into an auxiliary equation

∂u

∂t
+ γ(s− 1)

∂u

∂s
+ k(s− 1)G

∂u

∂G
= 0.

The characteristic system of this equation has the form:

ṫ = 1,

ṡ = γ(s− 1),

Ġ = k(s− 1)G,

t(τ) = τ + C1

s(τ) = C2e
γτ + 1

dG

G
= k(C2e

γτ )dτ.

(3.5)

To solve the equation, we have to find the functions which are constant on the

characteristics. Equations for t and s can be solved independently. Combining these

two functions we gain the first constant expression, t− ln(s−1)
γ

. Solving the equation

for G we obtain another constant expression in the form C3 = k(s−1)
γ
− ln(G) or even

more simple form C4 = ks
γ
− ln(G). And thus the general solution of the auxiliary

equation is

u(t, s, G(s, t)) = Φ

(
t− ln(s− 1)

γ
,
ks

γ
− ln(G)

)
.

Now, according to (1.8) let us take u in form ϕ
(
t− ln(s−1)

γ

)
+ ks

γ
− ln(G) = 0. It

follows, that we get the solution for G in the form G(s, t) = ψ
(
t− ln(s−1)

γ

)
· e

ks
γ .

To successfully solve the equation, we need to provide boundary conditions for

the generating function G. Let us investigate the case when there is no protein

at the beginning, thus P (x, 0) = δ0, which gives us the equation G(s, 0) = 1. We

already know the solution for stationary case, which gives us another condition

G(s,∞) = e
k
γ

(s−1). Using the condition at time 0 we can calculate

ψ

(
− ln(s− 1)

γ

)
= e−

ks
γ ⇒ ψ(a) = e−

k
γ (e−aγ+1).
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It implies that

G(s, t) = e−
k
γ (e−γt(s−1)+1)+ ks

γ = e−
k
γ

(s−1)(e−γt−1),

which is the same kind of generating function as the stationary state, just with

a different value of the parameter in Poisson distribution, which now means that

〈X 〉 = k
γ
· (1− e−γt).

3.3 Singular perturbation reduction

As Master equation (3.1) does not have solution in the closed form (unless Y = 0),

we seek to determine a quasi-steady-state solution. To achieve that, we assume

that binding/unbinding reactions are fast compared to production/degradation re-

actions (i.e. k− � γ). In order to do that, let us nondimensionalise time by setting

t =
τ

γ
.

Inserting the above into (3.1) yields

ε
d

dτ
PX ,N = ε

k

γ
(PX−1,N−1 − PX ,N )

+ ε ((N + 1)PX+1,N+1 − γNPX ,N )

+
1

kb

(
(N + 1)(Y − X + N + 1)PX ,N+1

− N (Y − X + N )PX ,N

)
+ (X − N + 1)PX ,N−1 − (X − N )PX ,N

+ ε ((X − N + 1)PX+1,N − (X − N )PX ,N ) ,

(3.6)

where

ε =
γ

k−
, kb =

k−
k+

are nondimensionalised parameters. By sending ε to zero, we obtain an equation

for the leading-order approximation of PX ,N .

0 =
1

kb
(N + 1)(Y − X + N + 1)PX ,N+1 −

1

kb
N (Y − X + N )PX ,N

+ (X − N + 1)PX ,N−1 − (X − N )PX ,N .

As X stays the same in this approximation, we can treat it as constant (abbreviation

PN stands for PX ,N ) and we get
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(N + 1)(Y − X + N + 1)PN+1 =

(N (Y − X + N ) + kb(X − N ))PN − kb(X − N + 1)PN−1,
(3.7)

whereby we require that boundary conditions PN (N < 0) = 0 and PN (N > X ∨
N < X − Y ) = 0 are satisfied. This difference equation has a solution

PN = PX ,N =
kNb C(X )

N !(X − N )!(Y − X + N )!
, (3.8)

where C(X ) is a constant with respect to N , dependent only on the value of X . Let

us prove statement (3.8) by mathematical induction with respect to N .

1◦ : N = max{X − Y , 0}

N = 0 : P0 =
C(X )

X !(Y − X )!

N = X − Y : PX−Y =
kX−Yb C(X )

(Y )!(X − Y )!

(3.9)

This holds, as P0 or PX−Y depends only on X and the constant Y . therefore the

validity of (3.9) can be ensured by an appropriate choice of C(X ).

2◦ : N = max{X − Y , 0}+ 1

N = 1 : P1 =
kbXP0

Y − X + 1
=

kbC(X )

(X − 1)!(Y − X + 1)!

N = X − Y + 1 : PX−Y+1 =
kbY PX−Y

X − Y + 1
=

kX−Y+1
b C(X )

(Y − 1)!(X − Y + 1)!

which is easy to see by substituting N = 0, or N = X − Y into (3.7).

Induction step (N − 1,N )→ N + 1 :

(N + 1)(Y − X + N + 1)PN+1 =

= (N (Y − X + N ) + kb(X − N ))
kNb C(X )

N !(X − N )!(Y − X + N )!
−

− kb(X − N + 1)
kN−1
b C(X )

(N − 1)!(X − N + 1)!(Y − X + N − 1)!

PN+1 =
kN+1
b C(X )

(N + 1)!(X − N − 1)!(Y − X + N + 1)!
.

28



This completes the proof by induction of the formula (3.8).

To explore further the term C(X ), we use the notation PX =
X∑

N=max{X−Y ,0}
PX ,N

to expand (3.8) as

PX =
X∑

i=max{0,X−Y }

PX ,i = C(X )
X∑

i=max{0,X−Y }

kib
((X − i)!(Y − X + i)!i!

,

and thus we can express C(X ) as

C(X ) = PX

 X∑
i=max{0,X−Y }

kib
(X − i)!(Y − X + i)!i!

−1

.

Now, since we already know about the Poissonian character of steady-state so-

lution for PX , we are ready to calculate the number of free protein in quasi-steady

state:

PN =
N+Y∑
X=N

PX ·
kNb

N !(X − N )!(Y − X + N )!
·

 X∑
i=max{0,X−Y }

kib
(X − i)!(Y − X + i)!i!

−1

.

(3.10)

Let us now investigate how the value of ε = γ
k−

influence the quality of this ap-

proximate solution. In order to do that, let us fix the mean of free protein 〈X 〉 = 30

and the dissociation constant kb = 10; this will result in the same quasi-steady-state

distribution regardless of the choice of ε. On the other hand, exact simulated dis-

tribution depends also on the value of ε = γ
k−

. If we divide both k+ and k− by 10,

we keep the value of kb, but decrease the value of ε by a factor of ten. We use the

values ε = 0.001, 0.01, 0.1, 1, 10. As the distribution of total protein is Poissonian,

we are also curious, how much our distribution differs from Poisson distribution. In

order to do that we calculate MLE (maximum likelihood estimation) of Poisson dis-

tribution based on result of stochastic simulation (see Section 1.1.3). We calculate

these distributions for different values of binding sites; Y = 0, 10, 20, 30. Results

can be seen on Figures 3.2 and 3.3. The green histogram is distribution generated

by the repeated simulations (105) of the Gillespie algorithm (see Section 2.2.2) for

a sufficiently long time, blue line is the probability distribution of free protein in

quasi-steady-state (3.10) and red line is the best-fit Poisson distribution calculated

with MLE.

Case Y = 0 is special as no binding/unbinding reactions can occur. Therefore

the choice of ε has no effect on the distribution and both Gillespie and QSS results
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Figure 3.2: Quality of quasi-steady-state solution for Y = 0 and Y = 10.

yield Poisson distribution. Other observations are also expected. It is possible to

see even with a bare eye that with increasing value of ε the QSS distribution fits the

simulated distribution less well. To evaluate the goodness of the fit, we calculate

the Bhattacharyya distance (see Section 1.1.4) between these two distributions and

put it together in Table 3.1. In Table 3.2 we also present the distance between

simulated distribution and MLE of Poisson distribution. As we add further noise

into the Poisson process of total protein production/decay, the Gillespie distribution

is broader than the Poisson distribution. But, as we increase ε, the number of

binding/unbinding reactions decreases and we once again converge to the Poisson

distribution.

3.3.1 Moments of quasi-steady-state probability distribution

In this section we focus on the analysis of the free protein probability distribu-

tion in the quasi-steady-state. We focus on four basic statistical characteristics, the

mean µ, the variance σ2, the Fano factor (F = σ2

µ
) and the squared coefficient
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Figure 3.3: Quality of quasi-steady-state solution for Y = 20 and Y = 30.

Y \ ε 0.001 0.01 0.1 1 10
0 8.15 · 10−5 6.36 · 10−5 7.93 · 10−5 5.86 · 10−5 4.52 · 10−5

10 5.04 · 10−5 7.87 · 10−5 2.27 · 10−4 0.011 0.111
20 5.30 · 10−5 5.13 · 10−5 7.80 · 10−4 0.042 0.398
30 6.39 · 10−5 7.47 · 10−5 1.74 · 10−3 0.085 0.780

Table 3.1: Statistical distance between simulated distribution and quasi-steady-state ap-
proximation.

of variation (CV 2 = σ2

µ2
). We vary the total number of binding sites. We study

the changes in the characteristics of the free protein distribution for the selected

choice of the mean of total protein production 〈X 〉 and the dissociation constant

kb. These values are fixed: γ = 0.1, k− = 10; thus ε = 0.01 stays constant. As

we showed in previous section, for such value of ε the quasi-steady-state results

provide a good approximation of the final distribution. Different choices of k and

k+ are used to modify 〈X 〉 and kb. In order to calculate these statistical charac-

teristics, we use quasi-steady-state approximation, as running Gillespie algorithm

would be extremely time-consuming mainly for small values of ε due to simulation
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Y \ ε 0.001 0.01 0.1 1 10
0 7.80 · 10−5 6.33 · 10−5 7.92 · 10−5 5.67 · 10−5 4.41 · 10−5

10 1.60 · 10−3 1.77 · 10−3 1.36 · 10−3 2.76 · 10−4 7.02 · 10−5

20 3.74 · 10−3 3.90 · 10−3 3.02 · 10−3 6.41 · 10−4 6.32 · 10−5

30 4.37 · 10−3 4.44 · 10−3 3.17 · 10−3 7.56 · 10−4 8.03 · 10−5

Table 3.2: Statistical distance between simulated distribution and best-fit Poisson distribu-
tion.

of significant increase in number of binding/unbinding reactions. In order to show

that these results are appropriate we run Gillespie algorithm just for a few cases

and plot them together with QSS results. Results are presented in Figures 3.4-3.5.

Figure 3.4: Moments of the free protein probability distribution for different 〈X 〉.

The case Y = 0 gives the Poisson distribution, so we expect µ = σ2 and thus F =

1. Very large dissociation constants imply that proteins bind weakly to the binding

sites and thus the system keeps the characteristics similar to the Poisson distribution

for large numbers of binding sites. As the coefficient of variation squared increases

very fast with adding binding sites, we use a logarithmic scale in the last panel.
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Figure 3.5: Moments of the free protein probability distribution for different kb.

From the pictures it is obvious that for large values of Y , the mean and variance

tend to 0, the Fano factor tends to 1 and CV 2 diverges to infinity. That could imply

an approximate Poisson distribution. Let us investigate this hypothesis a little more.

3.3.2 Large Y regime

In the case, when Y � X (which also implies Y � N ), we can use the approxi-

mation for the factorial

Y ! = Y (Y − 1) · . . . · (Y − X + N + 1)︸ ︷︷ ︸
≈Y X−N

(Y − X + N )!

which can can rearranged to obtain

(Y − X + N )! ≈ Y !Y N−X . (3.11)

Substituting (3.11) into (3.10) and using binomial theorem and some basic manip-

ulation we obtain a simplified equation for the probability distribution of the free
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protein:

PN =
N+Y∑
X=N

PX ·
kNb Y

X−N

N !(X − N )!Y !
·

(
X∑
i=0

kibY
X−i

(X − i)!Y !i!

)−1

=
N+Y∑
X=N

PX ·
kNb Y

X−N

N !(X − N )!Y !
·

(
Y X

X !

X∑
i=0

(
kb
Y

)i(
X

X − i

))−1

=
N+Y∑
X=N

PX ·
(
X

N

)(
kb
Y

)N (
Y

kb + Y

)X

=
N+Y∑
X=N

PX ·
(
X

N

)(
kb

kb + Y

)N (
Y

kb + Y

)X−N

.

(3.12)

This formula can be also rewritten as
∑
PX · PN |X , where PX has a Poisson distri-

bution with parameter 〈X 〉 and we see that PN |X has a binomial distribution with

probability of Bernoulli trial given as kb
kb+Y

and number of trials set as X . Therefore

we can express the free protein distribution as N =
X∑
i=0

ξi, where P (ξi = 1) = kb
kb+Y

.

Let us perform now some algebraic manipulation on the probability generating

functions:

GN (s) =
∑
k≥0

P (N = k)sk

=
∑
k≥0

∑
j≥0

P (X = j)P

(
j∑
i=0

ξi = k

)
sk

=
∑
j≥0

P (X = j) (Gξ(s))
j

= GX (Gξ(s)) .

(3.13)

In the second step we used the rule for calculating probability generating function

of the sum of independent random variables (1.2). It is clear now that proba-

bility generating function for free protein is given as a composition of generating

functions for GX (Poisson distribution) and Gξ (Bernoulli distribution). Using the

formulae for the generating functions of these distributions (see Section 1.1.1) and

substituting them into (3.13) we obtain

GN (s) = exp (〈X 〉 (Gξ(s)− 1))

= exp

(
〈X 〉

(
Y + kbs

Y + kb
− 1

))
= exp

((
kb〈X 〉
kb + Y

)
(s− 1)

)
,

(3.14)
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which again indicates the Poisson distribution, but with a different parameter

〈N 〉 = V ar(N ) =
kb〈X 〉
kb + Y

.

Computing the probability distribution in quasi-steady state for large values of bind-

ing sites is infeasible as the formula works with the terms in the order Y !, therefore

we use Gillespie algorithm (with 105 repetitions) to estimate the mean and the vari-

ance of the distribution. The results are provided in table 3.4. Other parameters

used are (〈X 〉 = 10, kb = 10). As the distribution is Poisson, the Fano factor tends

to 1 and CV 2 = 1
〈N 〉 , which tends to infinity.

y theoretical 〈N 〉 V ar(N )
100 0.9091 1.0027 1.0124
500 0.1961 0.1999 0.2009
1000 0.099 0.0999 0.0998
5000 0.02 0.0201 0.02
10000 0.01 0.01 0.01

Table 3.3: Quality of approximated estimation for large Y .
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3.4 Numerical simulations

In this section, we introduce and compare three different ways how to obtain the

number of free protein using numerical simulations.

1) Using Gillespie algorithm. In this case we simulate the reaction as it really

happens through time.

2) Using explicit formula for free protein count in quasi-steady state. In this case

we assume that k− � γ.

3) Solving the system of ODEs given by the Master equation. As the problem

contains infinite number of equations, we have to set maximal value of the

number of all protein at which the system is truncated.

We used these parameters in all three cases: Y = 10, k = 3, k+ = 1, k− = 10

and γ = 0.1. As the initial condition of the system we use the no-protein case, i.e.

PX ,N = δX ,N ,(0,0).

3.4.1 Gillespie algorithm

Applying the algorithm described in Section 2.2.2 to the current problem we obtain

the following step-by-step algorithm.

1) Calculate α, such that probability that any reaction will occur in interval [t, t+

dt] is equal to α · dt. This is given by

α = k + N γ + k+N (Y − X + N ) + Ck− + Cγ.

2) Choose two random numbers r1, r2 from the uniform distribution on the

interval [0, 1].

3) Use r1 to calculate the time when the next reaction occurs, τ = 1
α

ln( 1
r1

).

4) Use r2 to calculate which reaction occurs at the time t+τ . If 0 ≤ αr2 < k, then

free protein production occurred; if k ≤ αr2 < k+N γ, then free protein decay

occurred; if k+N γ ≤ αr2 < k+N γ+k+N (Y −X +N ), then binding reaction

occurred; if k+N γ+k+N (Y−X+N ) ≤ αr2 < k+N γ+k+N (Y−X+N )+Ck−,

then unbinding reaction occurred and if k+N γ + k+N (Y −X +N ) +Ck− ≤
αr2 < α, then bounded protein decay just occurred.
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5) Repeat steps (2 − 4) and write down the values of N (free protein) and X

(total protein) in given time points.

6) Let the simulation run 105 times to obtain the probability distribution of these

variables.

3.4.2 Quasi-steady-state approximation

In this section we use the result obtained in Section 3.2, that under the given initial

condition, total protein distribution PX follows the Poisson distribution with the

mean 〈X 〉 = k
γ
· (1− e−γt). Together with (3.10) we get the formula for PN :

PN = C(X )
kNb

((X − N )!(Y − X + N )!N !
,

where C(X ) = PX

 X∑
i=max{0,X−Y }

kib
((X − i)!(Y − X + i)!i!

−1

,

let us remind the substitution for dissociation rate constant kb = k−
k+

. Problem

with this approach is that in order to get desired PN , we need to multiply very

huge number C(X ) with very small fraction. As the fraction also contains member

(X − N )!, we have to set upper level for X and N in order to compute non-zero

values of PX ,N . We use upper bound X = 100 in order to be consistent with the

ODE approach. All protein distribution calculations are based on the results from

Section 3.3.

In Figure 3.6 we display the time evolution of the four statistical characteris-

tics of both free and total protein levels as calculated with the Quasi-steady-state

approach.

3.4.3 Differential equations

In order to turn Master equation (3.1) into a finite system of ODEs, we set all

probabilities, where X (the number of total protein) is greater than 100 to zero.

We can also use the fact that the amount of free protein cannot be greater than the

amount of total protein and set all PX ,N such that N > X to zero. Second restricting

condition is based on the number of binding sites Y . As number of bound protein

(X −N ) is Y in maximal case, we can set all PX ,N , such that N < X −Y , to zero.

Therefore the number of non-zero equations is actually less than 10 · 101 instead of

101 · 101. From the general from of Master equation we can write them as
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Figure 3.6: Time evolution of statistical characteristics.

Ṗ0,0 = −kP0,0 + γP1,1 + γP1,0,

Ṗ1,0 = −kP1,0 + γP2,1 + k+Y P1,1 − k−P1,0 + 2γP2,0,

Ṗ1,1 = kP0,0 − kP1,1 + 2γP2,2 − γP1,1 − k+Y P1,1 + k−P1,0 − k−P1,0 + γP2,1,

...

Ṗ100,100 = kP99,99 − kP100,100 − 100γP100,100 − 100k+Y P100,100 + k−P100,99.

(3.15)

In order to solve it, we can write this system of ODEs in the matrix form as Ṗ =

A.P , where P is vector of all relevant non-zero probabilities and A is a transition

matrix. From the form of (3.15) we see that A is matrix with constant terms,

therefore we obtain the linear system of ODEs. As the system is linear, its Jacobian

matrix stays constant during the whole process. Its eigenvalues range from −1075

to a little bit under zero, with eleven eigenvalues smaller than −1000. Therefore

we can say that no solution component is unstable (eigenvalue with large positive

real value) and some components are very stable (eigenvalue with large negative
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real value). This situation is not good for the propagation of error in a numerical

scheme and we refer to such system of ODEs as stiff. This is a common situation

with Master equations. For more information about the stiff ODEs, we recommend

looking at [42]. In order to obtain solution of this system we use MATLAB ordinary

differential equation solver ode15s, which is a variable-step, variable-order solver

based on the numerical differentiation formulas of orders one to five capable of

solving stiff ODEs (see [43] for reference).

3.4.4 Comparison

The output of the numerical simulations is the probability surface PX ,N in the given

time points. In Table 3.4 we observe the differences in the probability surfaces

obtained by different methods. Difference between the two methods is again de-

fined as the Bhattacharyya distance (see Section 1.1.4) applied to the differences

of the two probability surfaces. In Figure 3.7 we provide examples of heatmaps of

probability distributions in the chosen moments in time.

Time Gill vs. ODE Gill vs. Quasi ODE vs. Quasi
0 0 0 0
1 1.88 · 10−3 7.86 · 10−4 2.69 · 10−3

2 4.74 · 10−4 5.34 · 10−4 6.80 · 10−4

3 2.80 · 10−4 5.20 · 10−4 2.16 · 10−4

4 3.84 · 10−4 4.43 · 10−4 1.99 · 10−4

5 1.61 · 10−3 4.81 · 10−4 1.28 · 10−3

10 1.37 · 10−3 5.34 · 10−4 9.88 · 10−4

20 5.37 · 10−4 5.58 · 10−4 3.01 · 10−5

50 5.72 · 10−4 5.67 · 10−4 3.18 · 10−5

100 6.20 · 10−4 6.44 · 10−4 2.40 · 10−5

Table 3.4: Statistical distance between simulated probability surfaces obtained by different
numerical methods.
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Figure 3.7: Time evolution of probability surfaces for different methods.
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We formulated a simplified gene expression model and presented the associ-

ated Master equation. Then we obtained the distribution of total protein and after

employing singular perturbation reduction we also derived quasi-steady-state solu-

tion for the free protein distribution. Then we compared it with the distribution

obtained using two other methods: simulated by Gillespie algorithm and from a

system of ODEs. With the help of numerical simulations we studied its statistical

moments; we also compared the distributions obtained from the three methods.

We reported a very good agreement between the distributions; thus we justified

the use of the quasi-steady-state solution as a very good approximation for the free

protein distribution.
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CHAPTER 4

Small noise approximation

In this chapter we try to further simplify the distribution of free protein species (in

system of reactions presented in Chapter 3) and its Fano factor for some reasonable

specific case. In the previous part we already obtained free protein probability dis-

tribution (in quasi-steady state) in the closed form; but in this chapter we aim to

obtain a closed-form formula for statistical moments. In order to do that we per-

form an expansion of the Master equation in a linear-noise scenario in the similar

manner as presented in Chapter X in [49]. We divide this procedure into three main

stages. First we derive deterministic mean of the distribution, secondly we include

noise from binding/unbinding reactions and finally we add noise from total protein

number fluctuation. We also justify our results and compare them to formulae from

Chapter 3 using numerical simulations. This chapter is also part of paper [21].

We focus on the limit case when the size Ω of the system is large enough (Ω� 1).

Under these assumption we write down our variables in terms of concentrations

rather than total numbers:

X = Ω · x - total protein, Y = Ω · y - total binding sites,

N = Ω · n - free protein, Yf = Ω · yf - free binding sites,

C = Ω · c - complex.

We would like to underscore the fact that lowercase letters here denote the con-

centration of a particular reactant denoted by corresponding uppercase letter. We

identify the system size Ω with the dissociation constant kb = k−/k+ in our model.

This is a standard approach and it guarantee that the binding and unbinding reac-

tion rates are of the same order: the probability of a binding reaction occurrence

depends on N ·Yf · k+ = n · yf ·Ω2 · k+ and the probability of an unbinding reaction

occurrence depends on C · k− = c · Ω · k−.
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We focus here on the Fano factor as the characteristic of free protein distribution

noise; in our case this noise can have two sources: the first one is the reversible

association, and the second one is protein production/degradation. As we already

mentioned, the timescales of these two processes are diametrically different; thus,

we can treat them separately. For the reversible association we first investigate the

deterministic approach to the reactions to obtain expected values of the reactants.

Afterward we focus on stochastic component to inspect the noise present in the

system. For protein production/degradation we already know about the Poissonian

character of the process, therefore the main challenge here is to combine the two

individual results here in the correct way.

4.1 Constant X (total protein count)

In this part, let us concentrate on the reversible association Xf + Yf

k+−⇀↽−
k−

C. In the

course of this reaction, we can treat the values of x (total protein concentration)

and y (total binding sites concentration) as constants which will allow us to express

other reactants in terms of these values. As we already mentioned previously, we

were not able to express the distribution of free protein in the closed form, therefore

we seek to approximate it as well as we can.

4.1.1 Deterministic case

If we assume large protein numbers, we can obtain the mean of the distribution by

finding the stationary state of deterministic reaction kinetics, which we reviewed in

Section 2.1. The concentrations x and y are treated as constants here. The variables

n, yf and c are dependent on time. Let us summarise the information we have

available. Firstly, we know that the reversible association reaction Xf + Yf
k+−⇀↽−
k−

C

gives us the condition n · yf = c in the stationary state. As we mentioned above,

all the concentrations (n of free protein, yf of free binding site, and c of their

complex) are measured in units of the dissociation constant. Secondly, we can

transform already mentioned conservation laws to the concentration terms and

obtain n + c = x for the total protein and yf + c = y for the total binding-site

concentration. These equations together form the system of three equations with

three unknown variables, therefore it is easy to get the solution. If we combine

them together and express c from them, we obtain the quadratic equation

c̄2 + c̄(−x− y − 1) + xy = 0.
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It has a single non-negative solution, which we refer to as n̄, ȳf , c̄, and has the form

c̄(x, y) =
x+ y + 1−

√
x2 + y2 + 1 + 2x+ 2y − 2xy

2
,

n̄(x, y) = x− c̄,

ȳf (x, y) = y − c̄.

(4.1)

For the sake of greater parsimony, we omit the explicit notation of dependence of

c̄, n̄, ȳf on the total concentration of x and y in all non-ambiguous cases further

down in the rest of the chapter.

4.1.2 Stochastic component

We assume that the number of total protein X remains constant, focusing only on

the binding/unbinding reactions:

Xf + Yf

k+−⇀↽−
k−

C.

In this setup, the problem is only one-dimensional. We choose C as our main

variable for computation here, as it turns out that the calculations are the least

complicated in that case. Other two dependent variables can be calculated in the

straightforward manner as N = X −C for free protein number and Yf = Y −C for

free binding sites number. We can write down the Master equation in the similar

manner as in 3.1 (just in terms of different variables) and obtain

ṖC = k− ((C + 1)PC+1 − CPC ) + k+ ((N + 1)(Yf + 1)PC−1 − NYfPC ) ,

where PC denotes probability mass function of C . In order to simplify this ex-

pression, let us recall the shift-operator notation from [49] (Eif(n) = f(n + i)) to

transform the Master equation into nicer compact form. Also as we investigate the

distribution in the steady state, we set the time-derivative on the left side of the

equation to zero. Applying this yields an equation in the form

0 = (E− 1)k−CPC + (E−1 − 1)k+NYfPC , (4.2)

As the equation is written in terms of C , the shifting is also executed with respect

to C . Let us emphasize the fact that applying E−1 to N will cause it to shift into

N + 1 as N depends on C through the formula N = X − C and the same applies

for Yf .

Inserting the scaling between reactants numbers and concentrations (N = Ω · n,

Yf = Ω · yf , C = Ω · c and kb = Ω) into (4.2) yields

0 = (E− 1)cPc + (E−1 − 1)nyfPc, (4.3)
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Let us now investigate the behavior of the shift operator for a moment. As the

shifting is executed with respect to C , arbitrary function f(C̃ ) will be changed to

f(C̃ + 1) after applying the operator. If we now rewrite the same step in terms of

variable c (concentration of C ) we go from f(Ω · c̃) to f(Ω · c̃ + 1) or alternatively

we can substitute and rewrite it as g(c̃) 7→ g(c̃ + Ω−1). Let us now recall the fact

that Ω is big, thus Ω−1 is small increment in terms of c. Therefore it is possible to

estimate g(c̃+ Ω−1) using the Taylor expansion near c̃ as

g(c̃+ Ω−1) = g(c̃) + Ω−1∂g

∂c
(c̃) +

Ω−2

2

∂2g

∂c2
(c̃) + . . . .

If we use this fact and apply the same rationale to E−1 we can formally expand the

shift operators as follows:

E = e∂C = eΩ−1∂c = 1 + Ω−1∂c +
Ω−2

2
∂2
c + . . .

E−1 = e−∂C = e−Ω−1∂c = 1− Ω−1∂c +
Ω−2

2
∂2
c − . . .

(4.4)

Inserting (4.4) into (4.3) we can write

0 =

(
Ω−1∂c +

Ω−2

2
∂2
c + . . .

)
cPc + (−Ω−1∂c +

Ω−2

2
∂2
c − . . .)nyfPc.

It is possible now to multiply the equation by Ω. To deal with the infinite number

of terms, let us recall the fact, that Ω−1 � 1 and thus we can neglect all terms of

order lower than Ω−1 to obtain

∂c

[
(c− nyf )Pc +

Ω−1

2
∂c ((c+ nyf )Pc)

]
= 0. (4.5)

If we now integrate this equation with respect to c (with zero-flux conditions) we

come to

(c− nyf )Pc +
Ω−1

2
∂c ((c+ nyf )Pc) = 0.

Let us denote the terms which appear in the above equation as A = c − nyf and

B = c+ nyf . Here comes into play the assumption of small (or linear) noise, hence

the name small-noise (or linear-noise) approximation. Using small-noise approxi-

mation (variance of c is of order Ω−1) in this case is based on Taylor-expanding A

and B around the deterministic mean value. Let us remind that since Ω−1 � 1 we

neglect all terms smaller than Ω−1 which means all terms smaller than Ω−1 in A
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and all terms smaller than Ω0 in B. Let us calculate:

A(c) = c− (x− c)(y − c)

A′(c) = 1 + x+ y − 2c = 1 + n+ yf

A(c) ' A(c̄) + A′(c̄)(c− c̄) = A′(c̄)(c− c̄)

= (1 + n̄+ ȳf )(c− c̄)

B(c) ' B(c̄)

= c̄+ n̄ȳf = 2n̄ȳf .

(4.6)

We used the facts that c̄ = n̄ȳf , n = x−c and yf = y−c. Substituting approximations

(4.6) into (4.5) yields

(1 + n̄+ ȳf )(c− c̄)Pc + Ω−1n̄ȳf∂cPc = 0

or after rearranging we come to

∂cPc = −1 + n̄+ ȳf
Ω−1n̄ȳf

· (c− c̄)Pc. (4.7)

This equation can be easily solved by the separation of variables c and Pc, which

yields

Pc ∝ exp

(
1

2
· (1 + n̄+ ȳf )

Ω−1n̄ȳf
· (c− c̄)2

)
.

This is the inner part of formula for normal distribution with mean c̄ and variance
Ω−1n̄ȳf
1+n̄+ȳf

, the term before the exponential can be chosen so as to make the distribution

integrate to one. We have thus found an approximate distribution of c; to put it

symbolically, we can say that

c ∼ N

(
c̄,

Ω−1n̄ȳf
1 + n̄+ ȳf

)
(4.8)

as Ω→∞. As n and yf can be computed directly from c as x− c, resp. y − c, they

follow the analogous distributions as c with the same variance and only different

mean.

4.2 Fluctuating X (total protein count)

In the second part, instead of taking X to be a constant, we assume that the total

protein count fluctuates due to creation of new protein molecules and decay of old

ones, which is denoted by a reversible pair of chemical reactions

∅
γ−⇀↽−
k

X.
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We already know that these processes operate on a much slower timescale than the

association/dissociation reactions. Furthermore, we have already found the steady-

state distribution of X (from Section 3.2); the result is that it is Poissonian with

〈X 〉 = Var(X ) = k
γ
. As Ω → ∞, we can approximate the Poissonian distribution of

X with a Gaussian distribution as N (〈X 〉, 〈X 〉) As we use the system-size scaling
k
γ

= 〈x〉 · Ω, we can estimate the distribution of 〈x〉 by a small-noise Gaussian

distribution

x =
X

Ω
∼ N

(
〈x〉,Ω−1 · 〈x〉

)
. (4.9)

In order to calculate the statistics of n (free protein concentration) we have to

combine the results (4.8) and (4.9) given that n is expressed in terms of slowly

fluctuating x (total protein concentration). The free protein concentration also

naturally depends on y (total concentration of binding sites), but as it is a constant

through the whole process, we can neglect it from our notation for the sake of

simplicity. We can use the law of total variance, described in Section 1.1.5, in order

to solve this problem. In our case, we can express the total variance as

Var(n) = E (Var(n|x)) + Var (E(n|x)) . (4.10)

We have already obtained in (4.8) the solution for E(n|x) and Var(n|x); we utilize

the fact that x fluctuates much more slowly that n and thus we can obtain results

for n subject to constant x. Using the large Ω approximation, we can write

E(n|x) = n̄ = n̄(x)

Var(n|x) =
Ω−1n̄(x)ȳf (x)

1 + n̄(x) + ȳf (x)
.

(4.11)

Since the variance of x is of order Ω−1 and we neglect all terms of order higher

than Ω−1, we can use the approximations n̄(x) ' n̄(〈x〉) and ȳf (x) ' ȳf (〈x〉) in the

formula for the conditional variance, which yields

E(Var(n|x)) ' Var(n|〈x〉) =
Ω−1 · n̄ȳf
1 + n̄+ ȳf

, (4.12)

evaluated at 〈x〉 (the mean of total protein concentration) and y (constant concen-

tration of binding sites). The final term left to calculate is Var(n̄(x)). If we used the

approximation n̄(x) = n̄(〈x〉), we would end with zero, which would incorrectly

neglect all the variance. Therefore we have to also include terms of next order

by using the linear variance approximation (first-order Taylor expansion), i.e. by

writing

n̄(x) ' n̄(〈x〉) +
dn̄

dx
· (x− 〈x〉).
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As the first part of expression is constant we can express the variance of n̄(x) from

this equation as

Var(n̄(x)) '
(
dn̄

dx

)2

|x=〈x〉
· Var(x)

=

(
dn̄

dx

)2

|x=〈x〉
· Ω−1〈x〉

(4.13)

We used here known Poissonian character of x. Hence, the last item left to calculate

is the derivation of n̄ with respect to x. In order to find it, let us start with taking

the equations that define the dependence of n̄, among others, on x:

n̄ȳf = c̄, n̄+ c̄ = x, ȳf + c̄ = y.

To obtain the term dn̄
dx

, let us now differentiate these equations with respect to

variable x; this yields
dn̄

dx
· ȳf +

dȳf
dx
· n̄ =

dc̄

dx
, (4.14)

dn̄

dx
+
dc̄

dx
= 1, (4.15)

dȳf
dx

+
dc̄

dx
= 0. (4.16)

Substituting (4.16) into (4.14), we can eliminate dȳf
dx

to obtain

dn̄

dx
· ȳf =

dc̄

dx
· (1 + n̄).

Now we can use equation (4.15) to substitute dc̄
dx

with 1− dn̄
dx

to get

dn̄

dx
· ȳf =

(
1− dn̄

dx

)
· (1 + n̄).

From this form it is trivial to express desired derivative as

dn̄

dx
=

1 + n̄

1 + n̄+ ȳf

and we can substitute it back to (4.13) and write down the formula for variance of

expected value from the law of total variance as

Var(n̄(x)) '
(

1 + n̄

1 + n̄+ ȳf

)2

· Ω−1〈x〉. (4.17)

All partial terms were calculated and we are now in a position to express the

(unconditioned) moments of n. The mean is obtained by substituting 〈x〉 into the
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deterministic results (4.1), and the variance is determined by substituting the par-

tial results (4.12) and (4.17) into the formula for total variance (variance decom-

position theorem) (4.10). For the mean we obtained the formula

E(n) = n̄(〈x〉)

=
〈x〉 − y − 1 +

√
〈x〉2 + y2 + 1 + 2〈x〉+ 2y − 2〈x〉y

2
.

(4.18)

The variance can be expressed in the form

Var(n) = Ω−1

(
n̄ȳf

1 + n̄+ ȳf
+

(
1 + n̄

1 + n̄+ ȳf

)2

〈x〉

)
. (4.19)

Combining these two results allows us to obtain the quantity of our main focus, the

Fano factor, as

F =
Var(N )

E(N )
=

Var(Ω · n)

E(Ω · n)
= Ω · Var(n)

E(n)
. (4.20)

Substituting (4.18) and (4.19) into (4.20) we obtain

F =
ȳf

1 + n̄+ ȳf
+

(
1 + x̄

1 + n̄+ ȳf

)2 〈x〉
n̄
.

We can now use the facts that n̄ȳf = c̄ and 〈x〉 = n̄+ c̄ to obtain

F =
ȳf (1 + n̄+ ȳf ) + (1 + n̄)2(1 + ȳf )

(1 + n̄+ ȳf )
2 .

Let us now perform a couple of simplifying steps in order to get the expression of

the Fano factor in as simple a form as possible:

F =
(1 + n̄+ ȳf )

2 − (1 + n̄)(1 + n̄+ ȳf ) + (1 + n̄)2(1 + ȳf )

(1 + n̄+ ȳf )
2

= 1 +
−(1 + n̄)ȳf + (1 + n̄)2ȳf

(1 + n̄+ ȳf )
2

= 1 +
n̄ȳf (1 + n̄)

(1 + n̄+ ȳf )2
.

(4.21)

Here the term 1 can be interpreted as the Poissonian noise, whose source is the pro-

duction and degradation of new protein, and the residual fraction as an additional

non-Poissonian noise present due to the interaction with binding sites.

4.3 Numerical simulations

In the current section we perform numerical simulations in order to obtain visual-

ization of our computed results and to confirm the validity of the approximation
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scheme presented above. We divide these simulations into two main parts: behav-

ior of the Fano factor based on small-noise approximation (system-size approach)

for different values of 〈x〉 and y, and judging the quality of this approximation with

respect to results for the Fano factor obtained in previous chapter.

4.3.1 Fano factor based on system-size approach

As the basis for our numerical simulations, we have the following expression for

the Fano factor:

F = 1 +
n̄ȳf (1 + n̄)

(1 + n̄+ ȳf )2
.

All the terms inside the formula depends internally on two characteristics of the

system, total protein mean 〈x〉 and total number of binding sites y. Formulas how

to calculate n̄ and ȳf have been derived in the previous section as

n̄ =
〈x〉 − y − 1 +

√
〈x〉2 + y2 + 1 + 2〈x〉+ 2y − 2〈x〉y

2

and

ȳf =
y − 〈x〉 − 1 +

√
〈x〉2 + y2 + 1 + 2〈x〉+ 2y − 2〈x〉y

2
.

In the first simulation we investigate the behavior of Fano factor with respect to

different values of 〈x〉. In the first figure (Figure 4.1) we plot the dependence of

Fano factor on the number of binding sites. We calculate, plot and compare the Fano

factor for different values of 〈x〉. All values are meant to represent concentrations;

therefore to obtain the corresponding number of molecules we have to multiply

them by Ω. We clearly see that for larger values of 〈x〉 we are able to reach larger

values of F as the possibility for binding/unbinding reactions increase and with

them comes additional noise.

An interesting point to observe in the graphs is the slope near y = 0. We see

that for small values of 〈x〉 the slope increases with increasing 〈x〉 , but for larger

values of 〈x〉 the slope starts to decrease. In order to investigate this phenomenon

into further depth, let us calculate Taylor expansion near F (x, 0):

F (x,∆y) = 1 + ∆y · x

(1 + x)2
.

We can find the maximum of this value by differentiating

∂F (x,∆y)

∂x
= ∆y · 1− x

(1 + x)3
,

50



Figure 4.1: Fano factor for large system size with y as an independent variable.

which confirms that the maximal slope is obtained for 〈x〉 = 1.

In the second picture displayed on Figure 4.2 we take the ratio y/〈x〉 (number of

BS divided by mean number of total protein) as the independent variable and plot

Fano factor again for several different choices of 〈x〉.

Figure 4.2: Fano factor for large system size with y/〈x〉 as an independent variable.

We can see that for larger values of 〈x〉 the maximum of Fano factor is achieved

near y/〈x〉 = 1. In order to investigate this phenomenon further, let us express the

Fano factor in terms of new variables a = y
〈x〉 and b = 1

〈x〉 . This substitution yields

F (a, b) = 1 +
1

2
· a(1− a− b+

√
?)

?
,

? = a2 + b2 + 1 + 2b+ 2a− 2ab.

(4.22)

The problem of finding the maximum of Fano factor with respect to a is equivalent

to finding the solution of ∂F (a,b)
∂a

= 0, with F (a, b) from (4.22). This yields a very
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complex implicit function. As we are interested in cases with large values of 〈x〉, we

want to investigate its solution for small values of b. As we are unable to express

the value of b in terms of a from the implicit function in reasonable way, we have to

settle for numerical and graphical solution for this equation, which is provided in

Figure 4.3. This verifies our hypothesis that for large 〈x〉 the maximal Fano factor

is achieved near the point where y = 〈x〉.

Figure 4.3: Maximum of Fano factor; graphical solution.

4.3.2 Quality of the system-size approach

In this section we investigate the quality of the linear noise approximation. In order

to do so we compare the Fano factor calculated by the system size approach with

the results of the quasi-steady state analysis and check whether they are consistent.

Let us recall the results for the free protein distribution based on quasi-steady-

state approach:

PN =
N+Y∑
X=N

PX ·
kNb

N !(X − N )!(Y − X + N )!
·

·

 X∑
i=max{0,X−Y }

kib
(X − i)!(Y − X + i)!i!

−1

.

(4.23)

Using this formula we can obtain probability distribution of free protein and there-

fore express its Fano factor. But this approach is not straightforward and it brings

forward new issues. The formula (4.23) contains also the term N ! and terms of
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similar order. As factorial function rises extremely steeply, mathematical software

have problems calculating these values for large N . For example, MATLAB cannot

calculate factorials for numbers bigger than 170. In order to get the results for big

values of N , we have to rewrite the sum in a way that we get around these problems

and to avoid multiplying zero by infinity. For this purpose, (3.10) can be rewritten

as

PN =
N+Y∑
X=N

PX ·

 X∑
i=max{0,X−Y }

ki−Nb · N !(X − N )!(Y − X + N )!

i!(X − i)!(Y − X + i)!

−1

. (4.24)

In the formula in this form we do not have to calculate N ! but instead express

the term N !
i!

as the falling factorial: NN−i = N · (N − 1) · . . . · (i + 1) · i, if N > i or
1

ii−N = 1
i·(i−1)·...·(N+1)·N , if N < i. Other parts of the fraction can be expressed in an

analogous manner.

Now we can proceed with the calculations: we use 1, 5, 10 and 100 as the value

for Ω and compare the quasi-steady-state expression of Fano factor with the linear-

noise-approximation expression for Fano factor (4.21) for values of BS concentra-

tion y between 0 and 10. For the small values of Ω we expect larger difference

between the interpretations of Fano factor, for the case Ω = 100 we expect good

fit. In the case where Ω = 1 we can only use integer values of y, for Ω = 5 we can

use multiples of 0.2 for y, in other cases we use multiples of 0.1 for y in order to

plot the graphs. We use the same setup for the different values of 〈x〉, in particular

0.1, 0.5, 1 and 2. Resulting graphs are plotted on Figure 4.4 and confirm our as-

sumptions. Also we see that the differences between approximations increase with

〈x〉, which is no surprise as Fano factor achieves higher values in such cases.

Furthermore, in Table 4.1 we present the sum of squared residuals in the points

y = 1, 2, . . . , 10. (If y = 0, then F = 1 always, so we can omit this point.)

Ω 〈x〉 = 0.1 〈x〉 = 0.5 〈x〉 = 1 〈x〉 = 2
1 1.8 · 10−5 2.2 · 10−4 8.0 · 10−4 0.0032
5 5.6 · 10−7 8.9 · 10−6 3.3 · 10−5 1.4 · 10−4

10 1.4 · 10−7 2.2 · 10−6 8.4 · 10−6 3.6 · 10−5

100 1.3 · 10−9 2.2 · 10−8 8.5 · 10−8 3.6 · 10−7

Table 4.1: Sum of squared residuals from LNA expression of Fano factor.
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Figure 4.4: Fano factor for different system sizes.

In this chapter we considered the case of large system size using the dissociation

constant as the measure of this size. We isolated two sources of the noise in the sys-

tem and combined the results together to obtain a tractable expression for the Fano

factor of the free protein distribution which differs from the Poissonian case. We

also performed numerical simulations which showed that results for large system

size are consistent with the quasi-steady-state results from Chapter 3.
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CHAPTER 5

Distribution of mRNA – microRNA

system

A microRNA is a small, non-coding RNA and contains about 22 nucleotides (abbre-

viated form miRNA is sometimes used instead of microRNA). It can be found mainly

in some viruses, plants and animals. MicroRNA was discovered for the first time

in 1993 on the lin−4 gene, which was repressing another, lin−14 gene [30, 51].

This process of gene repression is a member of broad class known as RNA silenc-

ing. For more information about the biological background, we refer to [3]. The

content of this chapter is also the part of paper [6], which is currently submitted

for publication.

First, we introduce our chemical reaction system, formulate the Master equation,

and use generating functions to transform the Master equation into a partial differ-

ential equation of the second order (Section 5.1). In a specific parametric regime,

this partial differential is reduced to an ordinary differential equation (Section 5.2),

which is solved using the hypergeometric functions (Section 5.3). This solution

is used to construct non-trivial approximations to the probability mass function

and moments of the probability distribution of the chemical reaction system (Sec-

tion 5.4). We identify and discuss certain conditions in which the probability mass

function or the moments assume relatively simple algebraic forms (Section 5.5). Fi-

nally, we compare our results with stochastic simulations and discuss the numerical

observations (Section 5.6)
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5.1 The model and its Master equation

We consider two reactants in our system: X (mRNA) and Y (microRNA). In order

to describe their behavior, let us consider a discrete stochastic chemical kinetics

system composed of two species which are subject to two slow reactions

∅
κ

GGGGGA X + Y, X
1

GGGGGA ∅, (5.1)

and three fast reactions

X + Y

αq
ε

GGGGGGA Y, X + Y

α(1−q)
ε

GGGGGGGGGGA ∅, Y

1
ε

GGGGGA ∅. (5.2)

The reaction rates have been normalized in a way such that X decay rate equals

unity. Then κ is the normalized production rate, α is the normalized interaction

strength between X and Y and 1
ε

is Y decay rate; in other words ε � 1 is the half

life ratio of Y to X. The last parameter 0 ≤ q ≤ 1 gives the probability that Y

survives a bimolecular reaction with X.

Since the production of Y is slow but its decay is fast, the probability of observing

a nonzero amount of Y will be O(ε) small. Each time a new pair of X and Y

molecules is produced, a rapid corrective phase driven by the fast reactions ensues,

during which the newly produced Y can degrade multiple copies of X molecules

before it is itself degraded. On the slow timescale of production and decay of X,

this corrective phase manifests as an instantaneous jump in the copy number of X

from state m to one of the states 0, 1, . . . ,m+ 1. We display simulated trajectory of

this system for a few choices of parameters in Figure 5.1. We may notice that in all

three plots there is only one case when the number of microRNA species is greater

than one (we used value ε = 10−4). Other observation worth noticing is the fact

that there are no jumps in mRNA number on the third plot (case q = 0) in contrast

with the first plot (e.g. around t = 2.6) and the second plot (e.g. around t = 1.6).

This behavior is expected from the form of (5.2) and we focus on it in Section 5.5.

The Master equation for the system of reactions has the form

ṖM ,N =κ
(
E−1

M E−1
N − 1

)
PM ,N+

+ (EM − 1)MPM ,N+

+
αq

ε
(EM − 1)MNPM ,N+

+
α(1− q)

ε
(EMEN − 1)MNPM ,N+

+
1

ε
(EN − 1)NPM ,N .

(5.3)
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Figure 5.1: Trajectories of mRNA and microRNA simulated by Gillespie algorithm.
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Grouping the terms of same order in (5.3) together and evaluating the Master

equation in the steady state yields

ε
(
κ
(
E−1

M E−1
N − 1

)
PM ,N + (EM − 1)MPM ,N

)
+ (EN − 1)NPM ,N+

+ α ((q + (1− q)EN )EM − 1)MNPM ,N = 0.
(5.4)

As we observe two species, we use unit shift operators with respect to each variable

in the Master equation: EMf(M ,N ) = f(M + 1,N ), ENf(M ,N ) = f(M ,N + 1).

Let us define the generating function for two-dimensional sequence G(x, y) by

G(x, y) =
∞∑
m=0

∞∑
n=0

Pm,nx
myn. (5.5)

In order to transform (5.4) into the generating function form we need to multiply

both sides of equation by xM yN and subsequently sum them with respect to both M

and N . Through this transformation PM ,N maps into G(x, y). Another term which

appears in the Master equation is MPM ,N . After the transformation we obtain

∞∑
M=0

∞∑
N=0

PM ,NMxM yN = x
∞∑

M=0

∞∑
N=0

PM ,NMxM−1yN = x
∂G(x, y)

∂x
.

It follows that multiplying by M in space of bivariate probability is analogous to

applying operator x ∂
∂x

in space of generating functions. Using the same rationale

multiplying by N transforms into applying y ∂
∂y

. Let us now focus on shift operators

in Master equation. Let us calculate

∞∑
M=0

∞∑
N=0

EM (PM ,N )xM yN =
∞∑

M=0

∞∑
N=0

PM+1,Nx
M yN =

=
∞∑

M=0

∞∑
N=0

PM ,Nx
M−1yN =

1

x

∞∑
M=0

∞∑
N=0

PM ,Nx
M yN =

1

x
G(x, y),

(5.6)

which implies that applying EN in probability space transforms into multiplying by
1
x

in generating function space. Analogously we can write remaining transformation

rules as EN → 1
y
, E−1

M → x, E−1
N → y.

Applying the transformation rules mentioned above on (5.4), we find that the

generating function of the steady-state probability distribution PM ,N satisfies a

second-order partial differential equation

ε

(
κ (xy − 1)G+

(
1

x
− 1

)
x
∂G

∂x

)
+

(
1

y
− 1

)
y
∂G

∂y
+

+ α

((
q + (1− q)1

y

)
1

x
− 1

)
xy

∂2G

∂x∂y
= 0,

(5.7)
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which can be simplified and rewritten as

α (1− q + qy − xy)
∂G

∂x∂y
+ (1− y)

∂G

∂y
+ ε

(
κ(xy − 1)G+ (1− x)

∂G

∂x

)
= 0. (5.8)

Abbreviated form G stands for G(x, y). The requirement that the probabilities PM ,N

sum to one implies that the generating function satisfies the normalization condi-

tion G(1, 1) = 1, which can be used as an additional condition for (5.8).

5.2 Reduction to a 2nd-order ODE

In this moment we can incorporate the fact that the probabilities of observing

nonzero amounts of Y are small, and we rescale the probability by

PM ,N = εNQM ,N , (5.9)

which in terms of the generating function translates to

G(x, y) = F (x, εy), where F (x, ω) =
∞∑
m=0

∞∑
n=0

Qm,nx
mωn. (5.10)

As ε tends to 0, we can use Taylor expansion to represent F and ∂F/∂ω by their

leading order terms. Evaluating F and ∂F/∂ω at ω = 0 yields a function depending

only on x, we denote it f(x) and g(x) respectively, i.e.

F (x, 0; ε) = f(x) +O(ε),
∂F

∂ω
(x, 0; ε) = g(x) +O(ε). (5.11)

In order to obtain value of PM ,N we need to find the coefficient before term xM yN .

It is clear that probability greater than O(ε) can exist only for N = 0. We can

extract the value of probability by repeatedly differentiating the equality G(x, y) =

F (x, εy) = f(x) + O(ε) with respect to x and y and then setting x = y = 0, which

yields

PM ,N =
δN ,0
M !

dMf

dxM

∣∣∣∣
x=0

+O(ε). (5.12)

Thus, assuming that (5.9) holds (thus for N = 0 we can use PM ,N = QM ,N ), the

probability distribution is completely determined, at the leading order, by the func-

tion f(x). Using this information our task now reduced to determining the value of

f(x).

Substituting y = ω/ε into (5.8), we obtain a partial differential equation for the

rescaled generating function F (x, ω), which reads

κxωF − α(x− q)ω ∂2F

∂x∂ω
− ω∂F

∂ω
+

+ ε

(
−κF + (1− x)

∂F

∂x
+ α(1− q) ∂F

∂x∂ω
+
∂F

∂ω

)
= 0.

(5.13)
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We can obtain the first part of information by combining (5.13) with (5.11) and

collecting O(1) terms. As all O(1) terms contain variable ω, we can divide the

resulting equation by ω and afterward we can take ω → 0 to obtain the limiting

behaviour which can be expressed in terms of functions f(x) and g(x) defined on

the right-hand sides of (5.11). This yields

κxf − α(x− q)dg

dx
− g = 0. (5.14)

The second part of information can be obtained by letting ω = 0 in (5.13) and

collecting O(ε) terms, which yields

−κf − (x− 1)
df

dx
+ α(1− q)dg

dx
+ g = 0. (5.15)

At this stage we would like to use this system of two equations to eliminate one

of the unknown functions f and g. In order to eliminate g, we can add equa-

tions (5.14) and (5.15) up, and then divide the result by x− 1, obtaining

κf − df

dx
− αdg

dx
= 0. (5.16)

In order to eliminate dg/dx we add up the (1−q)-multiple of (5.14) and the (x−q)-
multiple of (5.15) before dividing the result by x− 1, whereby we obtain

−κqf − (x− q)df

dx
+ g = 0. (5.17)

In order to eliminate g completely, we should change g in (5.17) to dg/dx, as this

term appears also in (5.16). Differentiating (5.17), we get

−κqdf

dx
− d

dx

(
(x− q)df

dx

)
+

dg

dx
= 0. (5.18)

Adding up 1/α-multiple of (5.16) and 1-multiple of (5.18) to eliminate dg/dx, we

arrive at a ordinary differential equation of the second order for f , which reads

d

dx

(
(x− q)df

dx

)
+

(
κq +

1

α

)
df

dx
− κ

α
f = 0. (5.19)

In the next part we seek to solve this ODE.

5.3 Solving the 2nd-order ODE

Let us recall the generalized hypergeometric differential equation (1.12) from the

Section 1.2.2. Now we check if we can transform equation (5.19) into such a form.
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We are looking for the numbers p and q, which determine the order of hypergeomet-

ric function pFq (not to be confused with the reaction rate parameter q from (5.2)).

From the absence of term xdf
dx

in (5.19) we can deduce that only feasible value of

p is 0. And as the equation is a second-order ODE, we reduce the set of possible

values of q to 1.

Substituting the values p = 0, q = 1 into (1.12) yields that hypergeometric

function 0F1(; β;x) is a solution to equation

x
d2f

dx2
+ β

df

dx
− f = 0. (5.20)

Let us transform our 2nd-order ODE (5.19) obtained from the study of the

stochastic model into the canonical form (5.20). Introducing the substitution κ
α

(x−
q) = y into (5.19) and, using the implied fact that

df

dx
=

df

dy
· dy

dx
=
κ

α

df

dy
,

we can rewrite (5.19) as

κ

α

d

dy

(
y

df

dy

)
+
κ

α

(
κq +

1

α

)
df

dy
− κ

α
f = 0.

After differentiating the first term and dividing by κ
α

we come to equation

y
d2f

dy2
+

(
κq +

1

α
+ 1

)
df

dy
− f = 0,

which has the form of (5.20); therefore, we have found solutions in the form

f(x) = c0 · 0F1(;κq +
1

α
+ 1;

κ

α
(x− q)), (5.21)

in which c0 is an arbitrary constant. The ”doubly confluent” hypergeometric func-

tion 0F1 is defined by the convergent series

0F1(a, z) =
∞∑
m=0

zm

(a)mm!
. (5.22)

Imposing the normalisation condition for the probability to sum up to unity, which

in terms of our generating functions translates to f(1) = 1, we can determine the

prefactor c0 in (5.21) and obtain

f(x) =
0F1

(
κq + 1

α
+ 1, κ

α
(x− q)

)
0F1

(
κq + 1

α
+ 1, κ

α
(1− q)

) . (5.23)
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Basic properties of the doubly confluent hypergeometric function can be established

using its power-series representation (5.22). Differentiating (5.22) with respect to

z yields

d

dz
0F1(a, z) =

∑
m

mzm−1

(a)mm!
=
∑
m

mzm

(a)m+1m!
=

0F1(a+ 1, z)

a
. (5.24)

This procedure can be generalized for multiple differentiating and we obtain

dm

dzm
0F1(a, z) =

0F1(a+m, z)

(a)m
. (5.25)

Comparing (5.22) with the power-series expansions of the normal and modified

Bessel functions [1], we obtain

0F1(c, z) = Γ(c)z
1−c
2 Ic−1(2

√
z), 0F1(c,−z) = Γ(c)z

1−c
2 Jc−1(2

√
z), z > 0, (5.26)

where Γ(z) is the gamma function, Jν(z) is the Bessel function, and Iν(z) is the

modified Bessel function of order ν, more precisely

Jν(z) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(x
2

)2m+ν

,

Iν(z) = i−νJν(ix) =
∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)2m+v

.

5.4 Results

Applying the formula for repeated differentiation (5.25) on (5.23) yields

dmf(x)

dxm
=

(
κ
α

)m(
κq + 1

α
+ 1
)
m

× 0F1

(
κq + 1

α
+ 1 +m, κ

α
(x− q)

)
0F1

(
κq + 1

α
+ 1, κ

α
(1− q)

) , (5.27)

which in combination with (5.12) and the properties of generating function pro-

vides an approximation

PM ,N =
δN ,0

(
κ
α

)M
M !
(
κq + 1

α
+ 1
)
M

× 0F1

(
κq + 1

α
+ 1 + M ,−κq

α

)
0F1

(
κq + 1

α
+ 1, κ

α
(1− q)

) +O(ε) (5.28)

for the desired probability distribution. In order to find mean and variance of

distribution (5.28), let us calculate its factorial moments (theory in Section 1.1.1).

Evaluating the derivatives of f(x) at x = 1, we obtain

µ(M ) = 〈X(X − 1) · . . . · (X −M + 1)〉 =
dMf(x)

dxM

∣∣∣∣
x=1

+O(ε)

=

(
κ
α

)M(
κq + 1

α
+ 1
)
M

× 0F1

(
κq + 1

α
+ 1 + M , κ

α
(1− q)

)
0F1

(
κq + 1

α
+ 1, κ

α
(1− q)

) +O(ε).

(5.29)
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At the same time as noting that the mean 〈X〉 trivially coincides with the first

factorial moment µ(1), using (1.1) we also point out that the other characteristic of

interest here, the Fano factor, can be expressed in terms of the first two factorial

moments as

F = 1 +
µ(2)

µ(1)

− µ(1). (5.30)

We expressly mention, without carrying out the somewhat tedious calculation, that

the probability distribution (5.28) and the moments can be written in terms of

Bessel’s functions via (5.26).

5.5 Commentary on special cases

In this section we go through a few special cases of the system based on values

of α and q and try to simplify the (leading-order approximations of) probability

mass function (5.28). Interestingly, these simplifications can be related back to the

properties of the chemical system and its Master equation.

The most trivial case α = 0 describes the system in which the interaction ef-

fects of Y on X are neglected. After each producing reaction Y almost immedi-

ately decays without effect. Thus we can approximate the system with a simple

immigration-death process implying that steady-state distribution of X is Poisson

with mean κ. Substituting α → 0 into (5.19) we obtain simplified ODR κf = df
dx

with the trivial solution f = eκ(x−1). This confirms our assumption as it is PGF of

the Poisson distribution.

Other special cases can be obtained for boundary values of q, i.e. q = 0 and

q = 1. Given that the hypergeometric function 0F1(a, z) is equal to one at z = 0,

certain algebraic simplifications are available in the (leading-order approximations

of) probability mass function (5.28) if q = 0 and the moments (5.29) if q = 1.

If q = 0, the probability mass function (5.28) becomes, up to the normalisation

constant, a rational function of the parameters κ and α. Biologically, q = 0 means

that one molecule Y cannot degrade more than one X molecule during its lifetime.

When a pair of molecules X and Y is created, the probability that X survives until

the corresponding Y molecule degrades is given as

(N + 1)/ε

α(M + 1)/ε+ (N + 1)/ε
=

1

α(M + 1) + 1
.

The complementary probability pertains to the possibility that X is eliminated by

its twin molecule Y, whereby Y is also destroyed owing to q being set to 0.
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Consequently, no jumps in the copy number of X can occur in the limit of short

Y lifetimes (ε → 0). Therefore the limiting process on the slow timescale will be a

one-step random walk with stationary Master equation

0 =

{
(EM − 1)M + (E−1

M − 1)
κ

α(M + 1) + 1

}
PM ,

which can be transformed into the difference equation form

PM+1 =
1

M + 1

(
M +

κ

α(M + 1) + 1

)
PM +

1

M + 1

(
κ

αM + 1

)
PM−1. (5.31)

Solving (5.31) we obtain

PM =

(
κ
α

)M
M !
(
κq + 1

α
+ 1
)
M

P0,

which is a result that agrees with (5.28) for q = 0.

If q = 1, the moments (5.29) are given by rational functions of the model pa-

rameters; our results for the factorial moments of first and second order can then

be equivalently obtained from a set of algebraic moment equations, which turn out

to be closed in this particular case [45].

5.6 Numerical examples

The Fano factor of species X, as given by (5.29)–(5.30), exhibits a non-monotonous

response to an increase in the strength α of its interaction with species Y (Fig-

ure 5.2). The Poissonian character and thus F = 1 for the case α = 0 can be also

observed in the figure.

Interesting result for the Fano factor is that the Fano factor always eventually

climbs up as interaction strengthens; this holds even in the case when Y always

degrades in its interaction with X (q = 0). However, the increase in the Fano factor

that occurs in the q = 0 case is substantially slower than the increase observed

when the probability q of Y surviving the interaction is non-zero.

The circles in Figure 5.2 show individual values of Fano factor estimated by

stochastic Gillespie simulation of the chemical system (5.1)–(5.2) with a finite value

of ε = 0.01 (our analytic results being valid in the limit of ε → 0). Each dot is

calculated by averaging over 105 observations obtained by simulating the process

until it reached stationarity. We observe a good agreement between the numerical

and analytic results.
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Figure 5.2: Fano Factor of X as a function of the interaction strength with Y.

In further analysis, we focus on the distribution of M for a particular chosen

set of parameters. We continue to use κ = 20 for the normalised production rate,

select three values, 1, 0.5 and 0 of the probability q of Y-survival, and calculate

the values of α at which the Fano factor is minimal and thus the distribution is

most ’extreme’. These values are 0.047, 0.089 and 1.385, respectively. For the three

parameter sets we use (5.28) to determine the analytic distribution of species X

copy number (Figure 5.3, which is displayed as blue circles joined by lines). Addi-

tionally, we construct empirical histograms of the exact process by performing 105

independent Gillespie simulations of the chemical system (5.1)–(5.2) with ε = 0.1

(Figure 5.3, panels on the left, green bars) and also with ε = 0.01 (Figure 5.3, pan-

els on the right, green bars). For contrast with referential Poissonian statistics we

include a best-fit Poisson distribution (using MLE) in each of the panels (Figure 5.3,

represented by red circles joined by lines).

From all panels it is clear that the species X copy number distributions are nar-

rower than Poissonian distributions, verifying previous results of Fano factor being

less than one. Contrasting the cases with ε = 0.1 on the left with ε = 0.01 on the

right we observe that, as can reasonably be expected, decreasing ε leads to a better

agreement with our analytic results which were derived assuming ε→ 0. It is clear

that ε = 0.1 is not small enough to obtain good fit; on the other hand, simulated

distribution with ε = 0.01 are almost indistinguishable from the analytic values

using bare eye. Overall, we see a good agreement between theory and simulations.

By Figure 5.2, the Fano factor is close to one if α is very small or, contrastingly,
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Figure 5.3: Species X copy-number distributions (analytic and numerical results).
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Figure 5.4: Species X copy-number distributions (analytic and numerical results).

it is very large. Closeness of the Fano factor to one suggests that the underlying

distribution will be Poissonian if α � 1 or α � 1 as was also discussed in Sec-

tion 5.5. Examples shown in Figure 5.4 confirm such supposition with the first row

of panels showing examples in which α is very large (10) and the second row of

panels showing examples in which α is set to zero. In either situation, the quasi-

steady-state description yields a comparably accurate approximation to stochastic

simulation results as the best-fit Poisson distribution.
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Conclusion

In the first two chapters we summarised the theory regarding biochemical reac-

tions as well as relevant information about probability and ordinary and partial

differential equations. We introduced two approaches to reaction modelling: de-

terministic and stochastic; we chose the stochastic as the main approach. In the

next part we introduced a simplified gene expression model in the presence of (de-

coy) binding sites. We presented its Master equation, which does not have closed-

form solution. We derived the distribution of total protein and then we employed

singular-perturbation reduction techniques to obtain a quasi-steady-state approxi-

mation. Using this approximation we were able to obtain explicit formula for the

free protein distribution. In addition to quasi-steady-state approximation, we intro-

duced and compared two other methods to obtain free protein distribution. First

one was the stochastic simulation through Gillespie algorithm and the second one

numerical solving of the stiff system of ODEs. Comparing with other methods,

we justified the correctness of quasi-steady-state formula. Then we employed this

formula to observe statistical moments for a wide range of input parameters. We

focused on the Fano factor, which yielded substantially different results from Pois-

sonian case. In the fourth chapter we extended our model with the assumption of

large system size, using the dissociation constant as its measure. With linear noise

approximation we obtained simple expression for the Fano factor of free protein

distribution. With the help of numerical simulation we showed the consistency

with results from previous chapter. In the final chapter we applied similar meth-

ods on mRNA – microRNA system of reactions. We obtained explicit formula for

mRNA distribution and compared it with numerical simulations. Finally we stud-

ied the distribution for many input parameters and demonstrated the differences

between the Fano factor and the benchmark Poissonian case. Although we applied

our methodologies on relatively simple models, we expect that it can be helpful

to employ analogous approaches in other stochastic models of gene expression or

more general biological systems.
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